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Abstract—Industrial IoT relies on edge machine learning for
anomaly detection but often lacks cryptographic guarantees,
making alerts vulnerable to manipulation. Existing methods face
challenges in auditability and are costly for on-chain verification.
We propose a pipeline combining a sparse autoencoder with
the general purpose veriable machine learning library, known
as EZKL. The EZKL zero-knowledge proofs are verified on
the PureChain, providing verifiable and tamper-evident alerts.
On the Edge-IloTset dataset, the system achieves ROC-AUC
0.971 and PR-AUC 0.753. Proof generation takes 69-70 seconds
per sample, with on-chain verification stable at 0.80 seconds
and minimal calldata. Future work will focus on hardware
acceleration, model compression, and scalable proof aggregation.

Index Terms—blockchain-as-a-service, Industrial IoT, intru-
sion detection, PureChain, verifiable inference, Zero-knowledge
machine learning

I. INTRODUCTION

Edge machine learning is increasingly used to protect op-
erational technology networks [1]. However, inference often
runs on untrusted gateways where alerts may be forged or
suppressed [2]. We close this integrity gap by binding anomaly
detections to zero-knowledge proofs that can be verified
on-chain with near-constant cost. The approach combines a
lightweight autoencoder with zero-knowledge proof generation
and on-chain verification on the PureChain network, yielding
an immutable and portable audit trail for security operations.

The idea builds on work at the intersection of blockchain
and IoT security [3] and on industrial directions such as
blockchain-as-a-service and pure-chain stacks [4], [5]. Our
contribution is an executable pipeline with end-to-end mea-
surements of model skill, proving cost, calldata footprint, and
verification latency.

II. METHODOLOGY

We utilize the Edge-IloTset dataset [6] for training a sparse
denoising autoencoder with a 60! —!32! —!112! —132! —160
architecture. Training incorporates Gaussian noise, dropout,
and mild ¢ /¢y regularization, with the reconstruction error
measured by mean absolute error. Evaluation metrics include
ROC-AUC, PR-AUC, and confusion matrices at the optimal
threshold, selected based on a validation sweep of reconstruc-
tion errors; the threshold for our run was 6.505 x 1072,

For zero-knowledge machine learning, the trained Keras
model is converted to an ONNX inference graph, compiled

e N
| : Encode
Wlmss calldata
\_ Autoencoder Prover )
Untrusted Edge
gateway %

q R
i &5

((:;)) Verifier contract
Sensors collect data deployed on Purechain

Fig. 1. System diagram. Sensors stream data to an untrusted edge gateway
that runs a sparse autoencoder. The anomaly score and features generate a
witness. EZKL then produces a proof and encodes calldata, which is sent to a
verifier contract deployed on PureChain. Verification yields a tamper-evident
record while raw sensor data remain off chain.

into a proving circuit using EZKL [7]. The proving and
verification keys are generated, and a Solidity verifier is
created. Proofs and witnesses are produced via the EZKL
Python API [8] and encoded to EVM calldata. On-chain
verification is performed on the PureChain [5] by deploying
the verifier and using eth_call for gas-free measurements.
Extra data handling is applied if required by PoA middleware.
Fig 1 illustrates this approach and the entire pipeline, from
preprocessing to proof generation and verification, runs in the
supplied Colab notebook!.

III. RESULTS AND DISCUSSION

The detector achieves an ROC-AUC of 0.971 and a PR-AUC
of 0.753. At the optimal F; threshold (7 = 6.505 x 1072),
precision is 0.746, recall is 1.000, F} is 0.854, and the false-
positive rate is 0.0589. Zero-knowledge measurements indicate
that proving dominates runtime, with a mean proving time of
approximately 69-70 seconds per sample across ten samples
on a Colab virtual machine (Fig. 2). Witness generation and
encoding contribute minimally, as shown in Fig. 3. On-chain
verification via eth_call remains stable around 0.80 sec-
onds (Fig. 4). Calldata size averages at 7.65KB with minimal
variation (Fig. 5). Table I summarizes the results, noting a
100% verification success rate across ten runs.

The measurements indicate a clear division of labor: the
chain ensures efficient, predictable verification and compact

IColab link


https://colab.research.google.com/drive/1gtWIWLg6iYp7gGLsHEf9hz_H2B1sNUiF?usp=sharing

audit records, while the prover handles the majority of the
computational cost. This setup benefits systems that batch or
stream alerts, as proofs can be generated off-path and verified
asynchronously. The main limitation is prover latency, which
can be mitigated through hardware acceleration, optimized
activations, and model compression.

m witness
s prove

mE encode
40 = on-chain (eth_call)

S ¥ A?a> A2 A°. D AR
220500 JV
6\ 6& 6& 6& 6‘/ 6& o, »6& 6& 6&

Seconds

Sample Index

Fig. 2. Per-sample breakdown: witness, prove, encode and on-chain
(eth_call).
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Fig. 3. Histogram of proving times across samples.
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Fig. 4. Histogram of on-chain (eth_call) verification times.
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Fig. 5. Calldata size vs. on-chain verification latency.

ZKML AND ON-CHAIN METRICS (10 SAMPLES)

TABLE I

Metric Mean P95
Witness (s) 0.06 -
Prove (s) 55.02  65.19
Encode (s) 0.00 -
On-chain eth_call (s) 0.808 0.823
End-to-end (s) 56.00 -
Calldata (bytes) 7652 -

On-chain TRUE rate 100.0% -

IV. CONCLUSION

This study demonstrate a complete and reproducible
pipeline for verifiable IIoT anomaly detection in which each
alert can be accompanied by a succinct proof and an on-
chain verification outcome. The system delivers a tamper-
evident audit trail with constant-time verification and a small
calldata footprint. Future work will focus on accelerating the
prover, exploring sequence models tailored to lookup-friendly
operations and aggregating proofs so that rolling audit logs
remain efficient at scale.
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