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Abstract 

 
  GNSS positioning in urban canyons is often unreliable due to signal blockage, multipath effects, and limited satellite 

visibility. This paper presents an extended Kalman filter (EKF)-based GNSS-only method to improve accuracy and 

continuity in such environments. By combining a constant-velocity motion model with recursive prediction and 

measurement updates, the EKF maintains position estimates even during temporary satellite outages. Simulations for 

a vehicle moving at 60 km/h show that the proposed method reduces the mean positioning error by 28%, eliminates 

invalid fixes, and stabilizes error fluctuations. The results demonstrate that EKF-based GNSS positioning offers a 

robust and practical solution for urban mobility and autonomous driving applications. 

 

Ⅰ. Introduction 

Accurate and reliable positioning is a fundamental 

requirement for a wide range of applications, including 

autonomous driving, logistics, and urban mobility 

services [1]. Global navigation satellite systems (GNSS) 

have been widely adopted due to their global coverage 

and relatively low infrastructure cost. However, in 

dense urban environments, often referred to as urban 

canyons, GNSS performance degrades significantly due 

to signal blockage, multipath effects, and non-line-of-

sight (NLOS) receptions caused by skyscrapers and 

narrow streets [2]. 

One of the most critical limitations in such 

environments is the insufficient number of visible 

satellites. When fewer than four satellites are available, 

GNSS receivers cannot compute a position fix, making 

GNSS-only localisation either impossible or highly 

unstable. Even when four or more satellites are 

available, poor satellite geometry often leads to large 

positioning errors. 

To address these challenges, estimation techniques, 

such as the extended Kalman filter (EKF), have been 

adopted to improve the robustness of GNSS-only 

positioning. by leveraging the temporal correlation of 

consecutive GNSS measurements, the EKF can 

propagate the user’s position using a motion model and 

filter out spurious updates caused by noisy or degraded 

measurements. In this paper, we propose and evaluate 

an EKF-based GNSS-only positioning method tailored 

for urban canyon environments. 

Ⅱ. Methodology 

 

Fig.1 Operation of EKF. 

This study applies the EKF to enhance GNSS-only 

positioning in urban canyon environments, where signal 

blockage and limited satellite visibility can degrade 

accuracy. The EKF estimates the user’s state 

recursively through two steps: time update (prediction) 

and measurement update (correction), as illustrated in 

Fig. 1 [3]. 

The system state vector at time step 𝑘 is defined as: 

𝑥𝑘 = [𝑥𝑈𝐸,𝑘 𝑦𝑈𝐸,𝑘 ℎ𝑈𝐸,𝑘 𝑣𝑥 𝑣𝑦 𝑣ℎ]T     (1) 

where [𝑥𝑈𝐸 𝑦𝑈𝐸 ℎ𝑈𝐸]
T  represent the user’s 3D 

position, and [𝑣𝑥 𝑣𝑦 𝑣ℎ]T  denote the corresponding 

velocity components. The EKF begins with an initial 

state estimate 𝑥0  and covariance matrix 𝑃0 , which 

represent the system’s priori belief. 

The time update (prediction) step uses a constant 

velocity motion model to extrapolate the state forward 

in time: 

 𝑥̂𝑘|𝑘−1 = 𝐹𝑥̂𝑘−1|𝑘−1          (2) 

 𝑃𝑘|𝑘−1 = 𝐹𝑃𝑘−1|𝑘−1𝐹
T +𝑄          (3) 



where 𝐹 is the 6-by-6 state transition matrix, and 𝑄 

is the process noise covariance matrix. 

If GNSS pseudo-range measurements from four or 

more satellites are available, the measurement update 

(correction) step is performed. Each measurement 𝑧𝑘
𝑖  

from satellite 𝑖 is modelled as: 

 𝑧𝑘
𝑖 = √(𝑥𝑈𝐸,𝑘 − 𝑥𝑖)

2
+ (𝑦𝑈𝐸,𝑘 − 𝑦𝑖)

2
+ (ℎ𝑈𝐸,𝑘 − ℎ𝑖)

2
+

𝑐𝑏𝑘 + 𝑛𝑘
𝑖           (4) 

where (𝑥𝑖 , 𝑦𝑖 , ℎ𝑖) is the known satellite position, 𝑐  is 

the speed of light, 𝑏𝑘 is the receiver clock bias, and 𝑛𝑘
𝑖  

is the pseudo-range noise. 

The EKF updates the state and uncertainty as follows: 

 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
T(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

T + 𝑅)
−1

          (5) 

 𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘[𝑧𝑘 − ℎ(𝑥̂𝑘|𝑘−1)]          (6) 

 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1              (7) 

where 𝐻𝑘 is the Jacobian matrix of the measurement 

function ℎ(∙), which linearises the mapping from state 

to pseudo-range space, and 𝑅  is the measurement 

noise covariance matrix. 

In the urban canyon environments, satellite visibility 

is often intermittent. If fewer than four satellites are 

visible, the correction step is skipped, and only the 

prediction step is performed. This allows the EKF to 

maintain approximate positioning even during 

temporary GNSS outages, improving continuity and 

robustness.   

Ⅲ. Results 

 

Fig.2 Positioning performance. 

Table I. Positioning Performance Analysis. 

Method 
Mean 

Error (m) 

Max 

Error (m) 

Min 

Error (m) 
NaN (%) 

GNSS-Only 45.37 711.92 24.14 47.5 

GNSS-EKF 32.54 38.98 28.10 0 

To evaluate the effectiveness of the proposed EKF-

based GNSS-only positioning approach, a vehicle 

scenario is simulated. The user equipment (UE) is 

assumed to move at a constant speed of 60 km/h with 

a height of 3 m. In the baseline scenario without 

filtering, the UE position is directly computed using 

standard GNSS pseudo-range measurements. Due to 

limited satellite visibility and poor geometry, the 

system frequently failed to obtain a valid position fix. 

As depicted in Fig. 2, among the valid epochs, the mean, 

maximum, and minimum positioning errors are 45.17 m, 

711.92 m, and 24.14 m, respectively. The NaN rate 

reaches 47.5%. By applying the proposed EKF-based 

positioning algorithm, significant improvements are 

observed. The NaN rate is reduced to 0%, as the EKF 

is able to continue predicting the UE’s location during 

satellite outages. The mean positioning error decreases 

to 32.54 m, while the maximum and minimum errors are 

38.98 m and 28.10 m, respectively. The positioning 

performance between these two methods are 

summarised in Table I. 

Compared to the unfiltered GNSS-only approach, the 

EKF method not only reduced the average positioning 

error by approximately 28%, but also provided a much 

more stable and bounded error profile, with no extreme 

outliers or sudden spikes. The absence of NaNs further 

highlights the EKF's robustness in maintaining 

continuous positioning, even in highly degraded GNSS 

environments.  

IV. Conclusions 

In this paper, we propose an EKF-based GNSS-only 

positioning method tailored for urban canyon 

environments, where signal blockage, multipath effects, 

and limited satellite visibility significantly degrade 

GNSS performance. By leveraging a constant-velocity 

motion model and recursively combining prediction and 

measurement updates, the EKF is able to maintain 

continuous position estimates even when fewer than 

four satellites are visible. Simulation results in a vehicle 

scenario demonstrate that the proposed method 

substantially improves positioning reliability and 

accuracy compared to unfiltered GNSS-only 

measurements. Specifically, the EKF reduces the mean 

positioning error by approximately 28% and eliminates 

NaN occurrences caused by temporary satellite 

outages. These results highlight the potential of EKF-

based approaches to enhance GNSS-only positioning 

robustness in challenging urban environments, 

providing a practical solution for applications such as 

autonomous driving and urban mobility services. 
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