Addressing Urban GNSS Signal Degradation with Extended Kalman Filtering
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Abstract

GNSS positioning in urban canyons is often unreliable due to signal blockage, multipath effects, and limited satellite
visibility. This paper presents an extended Kalman filter (EKF)-based GNSS-only method to improve accuracy and
continuity in such environments. By combining a constant-velocity motion model with recursive prediction and
measurement updates, the EKF maintains position estimates even during temporary satellite outages. Simulations for
a vehicle moving at 60 km/h show that the proposed method reduces the mean positioning error by 28%, eliminates
invalid fixes, and stabilizes error fluctuations. The results demonstrate that EKF-based GNSS positioning offers a
robust and practical solution for urban mobility and autonomous driving applications.

I . Introduction

Accurate and reliable positioning is a fundamental
requirement for a wide range of applications, including
autonomous driving, logistics, and urban mobility
services [1]. Global navigation satellite systems (GNSS)
have been widely adopted due to their global coverage
and relatively low infrastructure cost. However, in
dense urban environments, often referred to as urban
canyons, GNSS performance degrades significantly due
to signal blockage, multipath effects, and non-line-of-
sight (NLOS) receptions caused by skyscrapers and
narrow streets [2].

One of the most critical limitations in such
environments is the insufficient number of visible
satellites. When fewer than four satellites are available,
GNSS receivers cannot compute a position fix, making
GNSS-only localisation either impossible or highly
unstable. Even when four or more satellites are
available, poor satellite geometry often leads to large
positioning errors.

To address these challenges, estimation techniques,
such as the extended Kalman filter (EKF), have been
adopted to improve the robustness of GNSS-only
positioning. by leveraging the temporal correlation of
consecutive GNSS measurements, the EKF can
propagate the user’s position using a motion model and
filter out spurious updates caused by noisy or degraded
measurements. In this paper, we propose and evaluate
an EKF-based GNSS-only positioning method tailored
for urban canyon environments.

II. Methodology
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Fig.1 Operation of EKF.

This study applies the EKF to enhance GNSS-only
positioning in urban canyon environments, where signal
blockage and limited satellite visibility can degrade
accuracy. The EKF estimates the wuser’s state
recursively through two steps: time update (prediction)
and measurement update (correction), as illustrated in

Fig. 1 [3].
The system state vector at time step k is defined as:
xe = [XuEx Yuek huex Vx vy UR]T @)
where [xyg Yur hye]T represent the user’s 3D

position, and [Vx Yy Va]T denote the corresponding
velocity components. The EKF begins with an initial
state estimate x, and covariance matrix Py, which
represent the system'’s priori belief.

The time update (prediction) step uses a constant
velocity motion model to extrapolate the state forward
in time:

Rrjk-1 = FRe—1jk-1 2)
Piji—1 = FPi_qe—1FT + Q (3)



where F is the 6-by-6 state transition matrix, and Q
is the process noise covariance matrix.

If GNSS pseudo-range measurements from four or
more satellites are available, the measurement update
(correction) step is performed. Each measurement z,i{
from satellite i is modelled as:

zj, = \/(xUE,k - xi)z + (Yupk — yi)z + (hygy — hi)z +

chy +nk 4)

where (x%,y%h!) is the known satellite position, ¢ is

the speed of light, by is the receiver clock bias, and n}'{
is the pseudo-range noise.

The EKF updates the state and uncertainty as follows:

-1
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£k|k = £k|k—1 + Kk[zk - h(jC\k“(_l)] (6)

Prjk = (- Kka)Pklk—l (7

where Hp is the Jacobian matrix of the measurement
function h(:), which linearises the mapping from state
to pseudo-range space, and R is the measurement
noise covariance matrix.

In the urban canyon environments, satellite visibility
1s often intermittent. If fewer than four satellites are
visible, the correction step is skipped, and only the
prediction step is performed. This allows the EKF to
maintain  approximate positioning even during
temporary GNSS outages, improving continuity and
robustness.

II. Results
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Fig.2 Positioning performance.
Table I. Positioning Performance Analysis.
Mean Max Min o
Method Error (m) | Error (m) | Error (m) NaN (%)

GNSS-Only 45.37 711.92 24.14 47.5
GNSS-EKF 32.54 38.98 28.10 0

To evaluate the effectiveness of the proposed EKF-
based GNSS-only positioning approach, a vehicle
scenario is simulated. The user equipment (UE) is
assumed to move at a constant speed of 60 km/h with
a height of 3 m. In the baseline scenario without
filtering, the UE position is directly computed using
standard GNSS pseudo-range measurements. Due to
limited satellite visibility and poor geometry, the
system frequently failed to obtain a valid position fix.
As depicted in Fig. 2, among the valid epochs, the mean,

maximum, and minimum positioning errors are 45.17 m,
711.92 m, and 24.14 m, respectively. The NaN rate
reaches 47.5%. By applying the proposed EKF-based
positioning algorithm, significant improvements are
observed. The NaN rate is reduced to 0%, as the EKF
is able to continue predicting the UE’s location during
satellite outages. The mean positioning error decreases
to 32.54 m, while the maximum and minimum errors are
38.98 m and 28.10 m, respectively. The positioning
performance between these two methods are
summarised in Table I.

Compared to the unfiltered GNSS-only approach, the
EKF method not only reduced the average positioning
error by approximately 28%, but also provided a much
more stable and bounded error profile, with no extreme
outliers or sudden spikes. The absence of NaNs further
highlights the EKF's robustness in maintaining
continuous positioning, even in highly degraded GNSS
environments.

IV. Conclusions

In this paper, we propose an EKF-based GNSS-only
positioning method tailored for wurban canyon
environments, where signal blockage, multipath effects,
and limited satellite visibility significantly degrade
GNSS performance. By leveraging a constant-velocity
motion model and recursively combining prediction and
measurement updates, the EKF is able to maintain
continuous position estimates even when fewer than
four satellites are visible. Simulation results in a vehicle
scenario demonstrate that the proposed method
substantially improves positioning reliability and
accuracy compared to unfiltered GNSS-only
measurements. Specifically, the EKF reduces the mean
positioning error by approximately 28% and eliminates
NaN occurrences caused by temporary satellite
outages. These results highlight the potential of EKF-
based approaches to enhance GNSS-only positioning
robustness in challenging urban environments,
providing a practical solution for applications such as
autonomous driving and urban mobility services.
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