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Algorithm 1 Accuracy-based Filtering and Weighted Aggregation (at Edge
Server)

Require:
r: Current communication round
W, = [m,:}f 1 Set of client models at. the edge
Dyar: Public validation dataset at the edge
11 History of client accuracies {c : [accr— k41, ..., accr]}
N, M, K: Hyperparameters
Ensure:
Wedge: Aggregated edge model
A ]

: for all client model w. € W,. do
acc, « Evalnate(w,, Dyqr)
Append ace, to A
Update H[c] with ace,.
6: end for

// Step 1: Aceuracy-based Filtering
7 Agorted ¢ Sort(A, descending)
8 ACCag_topn < Mean(Agriea[l to N])
9: T 4 (g sopn X (M/100.0)
t Cletected < {}
11: for ¢ from 1 to C do
122 if Afe] > T then
13: Add ¢ to Cuctected
11 end if
15 end for

// Step 2: Weighted Aggregation
16: Q¢
17: for all client ¢ € Cypjected do
18w, ¢ Mean(H|c])
19: Append w, to
20: end for
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22: return wegge
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