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요 약

계층적연합 학습(Hierarchical Federated Learning, HierFL)은 높은확장성과통신효율성으로 인해대규모분산환경에적합한학습 구조로 주목받고
있다. 그러나 악의적인클라이언트가의도적으로라벨을 고의로변조하는라벨플립(Label-Flipping) 공격을수행할경우, 글로벌모델의성능이심각하
게저하되는취약점이존재한다. 본 논문에서는 이러한 문제를해결하기위해, 엣지 서버 단에서수행되는 2단계방어 기법을 제안한다. 첫 번째 단계는
정확도 기반 동적 필터링으로, 엣지 서버는 독립적인 검증 데이터셋을 활용해 각 클라이언트 모델의 정확도를 평가하고, 상위 그룹의 평균 정확도를
기준으로 동적으로 설정된 임계값 이하의 모델을 집계에서 제외한다. 두 번째 단계는 정확도 기반 가중 집계로, 필터링을 통과한 모델들에 대해 최근
K 라운드의 평균 정확도를 가중치로 적용하여 안정적인 집계를 수행한다. CIFAR-10 데이터셋을 이용한 실험 결과, 악의적 클라이언트 비율이 높은
공격 환경에서도 제안 기법은 안정적인 학습을 유지하며 베이스라인 대비 뚜렷한 성능 향상을 보였다. 이러한 결과는 제안한 악의적 클라이언트 방어
기법이 계층적 연합 학습 시스템의 신뢰성을 효과적으로 향상시킴을 보여준다.

Ⅰ. 서 론

최근 IoT 및 엣지 컴퓨팅 기술의 확산과 더불어, 대규모 분산 환경에서

개인정보를보호하며 인공지능모델을학습하는기술의 중요성이그어느

때보다 높아지고 있다. 연합학습은 데이터를 중앙 서버로 이동시키지 않

고, 각 클라이언트 기기에서 모델을 로컬로 학습한 뒤 업데이트 결과만을

공유하는 방식으로 이러한 요구를 효과적으로 충족시킨다[1]. 그러나 클

라이언트수가수천, 수만 단위로확장됨에따라중앙 서버에 직접 연결되

는 전통적인 연합학습 구조는 심각한 통신 병목과 서버부하문제를 초래

한다. 이를 해결하기 위해 서버–엣지–클라이언트의 3계층 구조를 갖는

계층적 연합학습(Hierarchical Federated Learning, HierFL)이 제안되었

으며, 엣지 서버가 인접한 클라이언트 그룹의 중간 집계자로서 통신 효율

성과 학습 속도를 개선하는 대안으로 주목받고 있다[2]. 하지만 HierFL

구조는 여전히 보안 위협에 취약하다. 특히 일부 악의적 클라이언트가 데

이터의 라벨링을 변조하여 학습을 방해하는 라벨 플립 공격은 글로벌 모

델의성능을 심각하게훼손한다[3]. 따라서 기존 HierFL에서는 엣지 서버

가악의적업데이트를별도의검증없이상위서버로전달하기때문에, 소

수의 공격만으로도 전체 모델이 쉽게 오염된다. 이는 엣지 서버가 단순한

중계 노드의 역할로 머무는 한 구조적으로 해결하기 어려운 문제이다.

본 논문에서는이러한취약점을해결하기위해, 엣지 서버를수동적인집

계자에서 능동적 방어 노드(active defense node)로 전환하는 2단계 방어

기법을 제안한다. 제안 기법의 핵심은 엣지 서버가 각 클라이언트가 생성

한 지역 모델의 정확도를 독립적으로 평가하고, 이를 바탕으로 정확도 기

반의집계를수행하는것이다. 첫 번째단계에서는정확도기반동적필터

링을 통해 정확도가 낮은 클라이언트를 집계에서 제외하고, 두 번째 단계

에서는 가중 집계를 통해 정확도에 따라 클라이언트의 기여도를 다르게

책정한다. 게다가, 다양한공격시나리오에서의실험결과, 제안 기법은 악

의적 클라이언트에 대한 방어가없는기존기법대비 현저히 높은 신뢰성

을 보였으며, 극한의 공격 환경에서도 안정적인 학습을 유지함을 확인하

였다.

Ⅱ. 시스템 모델

그림 1 동적필터링과가중집계기능을갖는계층적연합학습구조

본 연구의 제안 기법은 그림 1과 같이 서버–엣지–클라이언트 구조를

갖는 계층적 연합학습 환경에 기반한다. 전역 서버는 기본 모델을 준비하

고 배포하는 역할을 한다. 이후 클라이언트는 개별적으로 보유한 데이터

를 기반으로 로컬 학습을 수행하며, 학습된 모델의 파라미터를 엣지 서버

로 전송한다. 각 엣지 서버는 연결된 클라이언트들로부터 수집한 파라미

터를 정확도 임계값을 기준으로 필터링 및 집계하여 엣지 모델을 형성한

다. 이렇게 생성된 엣지 모델은 다시 상위의 전역 서버로 전달되며, 이때

전역 서버는모든엣지 서버로부터 모인 결과를통합하여최종전역 모델



을갱신한다. 갱신된전역모델은다시각엣지서버를거쳐 클라이언트로

재배포되는 과정이 반복적으로 수행됨으로써 전체 시스템은 점차적으로

성능이 향상된 전역 모델로 완성된다.

Ⅲ. 제안 기법

알고리즘 1은엣지서버에서 2단계에걸쳐동작한다. 먼저, 엣지서버는독

립적인 검증 데이터셋으로 모든 클라이언트의 정확도를 평가한다. 다음으

로 첫 번째 단계인 동적 필터링 부분에서는 상위 N개의 모델의 평균 정확

도를 기준으로 동적 임계값 M을 설정하여, 이에 미치지 못하는 정확도의

모델은 집계에서 제외한다(알고리즘 1에서 7∼15번째 줄). 두 번째 단계인

가중집계부분에서는필터링을통과한모델들을대상으로최근K라운드의

평균 정확도를 각 모델의 가중치로 할당한다(알고리즘 1에서 21번째 줄).

IV. 성능 평가

제안하는 기법의 성능평가를 위해 CIFAR-10 데이터셋이 사용되었다.

전체학습데이터의 10%는클라이언트 모델을평가하고 필터링하기위한

검증 데이터셋으로 사용하였다. 나머지 90%의 학습 데이터는 50개의 클

라이언트에게분배되었으며, Non-IID 환경을 구성하기위해 10개의 클래

스 중 클라이언트당 2개의 클래스만 가지도록구성하였다. 악의적클라이

언트는 무작위로 선택되며, 자신의 로컬 데이터셋 라벨을 변조하는 라벨

플립(label-flipping) 공격으로 모사하였다. 공격 환경의 강도를 다양하게

평가하기 위해 악의적 클라이언트 비율은 20%, 40%, 60%로 설정하였으

며, 공격강도(라벨 변경확률)는 100%로설정하여실험을 수행하였다. 학

습은 총 125 라운드 동안 진행되었으며, 계층 구조는 50개의 클라이언트

와 5개의 엣지 서버로 구성되었다. 각 클라이언트는 라운드마다 5회의 로

컬 업데이트를 수행하였다. 학습 모델은 ResNet-18을 기반으로

SGD(Stochastic Gradient Descent) 옵티마이저를 적용하였다(learning

rate=0.05, momentum=0.9, weight decay=5e-4). 한편, 제안하는 2단계방

어기법의하이퍼파라미터는 N은 3, 임계 비율M은 80%, K는 5로설정하

였다. 이러한 환경에 기반하여, 제안하는 방어 기법과 방어 없이 단순 평

균으로 집계하는 기존 기법을 정확도 관점에서 성능을 비교하였다.

그림 2는 악의적 클라이언트의 비율에 따른 라운드별 전역 모델 정확도

의 변화를 보여준다. 그림 2의 결과를 살펴보면, 악의적 클라이언트 비율

이 증가할수록 기존 기법은 성능이 불안정하게 학습이 진행되고 있는 모

습을 보여준다. 반면, 제안 기법은악의적클라이언트 비율에 상관없이 안

정적으로 학습이 이루어지고 있는 모습을 보여준다.

V. 결론

본 논문에서는 라벨 플립공격에 취약한 계층적 연합학습의보안 문제를

해결하기 위해, 엣지 서버를 수동적인 중계 노드에서 능동적인 방어 노드

로전환하는 2단계방어기법을제안하였다. 제안기법은엣지서버가클라

이언트가학습한지역모델의정확도를평가하여정확도기반동적필터링

으로신뢰도가낮은모델을배제하고, 가중 집계를통해과거성능이우수

한 클라이언트의 기여도를 높이는 방식으로 동작한다.

다양한공격시나리오에대한실험결과, 제안 기법은악의적클라이언트

가 다수 존재하는 가혹한 환경에서도 기존 기법 대비 높은 신뢰성을 유지

하며, 안정적이고 신뢰할 수 있는 모델 학습 성능을 달성함을 확인하였다.

향후 연구로 필터링 강도의 동적 조절을 통해 다양한 공격 시나리오에 대

해서도 효과적으로 방어할 수 있도록 알고리즘을 개선할 예정이다.
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그림 2 악의적 클라이언트 비율에 따른 라운드별 테스트 정확도


