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요 약  
본 논문은 열화 메커니즘과 직접적으로 연결되는 특징을 생성하는 특성 공학을 적용해 LSTM-MHA 하이브리드 모델의 입력 특징으로 

인가할 시 열화 메커니즘을 반영하는 지 입증한다. 기존 순간적인 운전 조건 변수가 입력 특징으로 입력됐을 시 열화 패턴의 주요 패턴이 

반영되지 않는 문제를 초래했다. 테스트 결과 특성 공학 기법을 적용한 변수가 열화 메커니즘을 포함하는 결과를 도출하였다. 

 

I. 서 론  

기존 딥러닝 기반 SOH(State of Health) 추정 연구는 

순간적인 운전 조건 변수만 입력 특징으로 사용되는 

것이 일반적이다. 그러나 배터리 내부에선 복잡한 

화학적, 물리적 열화 패턴으로 인한 비선형적으로 

SOH 가 감소한다. 따라서 순간적인 운전 조건 변수만 

입력으로 인가하게 되면 열화의 누적 이력 정보를 

반영하지 못하기 때문에 SOH 추정 시 열화 속도, 

피크값과 같은 주요 패턴이 반영이 되지 않는 문제를 

초래하게 된다. 또한, LSTM(Long Short-Term 

Memory)이 긴 시퀀스나 시퀀스 내의 미묘하고 

결정적인 정보 포착 시 구조적 한계가 존재한다. 이를 

극복하기 위해 멀티-헤드 어텐션(Multi-Head 

Attention)을 결합하고 나아가 열화 메커니즘과 

직접적으로 연결되는 특징을 생성하는 특성 공학 

기법을 적용해 생성된 변수의 열화 패턴 내포 여부를 

입증한다. 

 

II. LSTM - MHA 하이브리드 모델  

 

2.1 LSTM(Long Short-Term Memory) 

본 논문에서는 리튬이온 배터리의 비선형적인 열화 

특성을 효과적으로 학습하기 위해 LSTM 모델을 

사용한다. LSTM 은 RNN(Recurrent Neural 

Network)의 기울기 소실 문제를 해결한 장기적 시계열 

데이터 학습 특화 모델이다. 이 모델의 핵심은 기존 

정보 전달 경로인 셀 상태를 가지고 있다는 점이다. 셀 

상태는 역전파 과정에서 반복적인 덧셈 연산을 통해 

과거의 정보를 전달한다. 따라서 기울기가 소실되지 

않고 안정적으로 과거의 정보를 전달할 수 있게 

된다[2]. 심층적인 학습을 위해 3개의 LSTM 레이어를 

중첩하고 각 레이어 사이에 배치 정규화, 드롭 아웃은 

<그림 1>과 같이 LSTM 레이어 사이에 위치하여 

모델이 훈련 데이터의 특정 패턴을 과도하게 

최적화하는 과적합 현상을 방지한다. 

  

 
<그림 1>  Tuning  LSTM 구조도 

 

2.2 Attention Mechanism 

 Attention Mechanism 은 시퀀스 데이터 내의 특정 

데이터 예측 수행 시 중요한 특정 과거 정보에 집중해 

가중치를 부여하는 기법이다. 단일 어텐션이 특정 

정보에 제한되어 집중하는 것을 방지하기 위해 멀티-

헤드 어텐션을 적용한다. 이 모델은 여러 개의 

독립적인 어텐션 헤드를 병렬로 사용해 하강 추세에 

집중하는 헤드와 피크치 유발 국소 패턴에 집중하는 

헤드로 분리해 기울기와 피크치를 동시에 집중한다.  

마지막으로 가중 손실 함수를 적용해 피크치 구간에서 

발생한 오차에 더 큰 패널티를 부여해 피크치를 

무시하는 문제를 예방한다. 따라서 LSTM 과 멀티-헤드 

어텐션을 결합하면 장기적 열화 추세 학습 시 시퀀스 

내의 결정적인 정보들에 집중해 LSTM 의 구조적 

한계를 보완할 수 있다. 

 

III. 데이터 전처리  

 본 논문에서 사용한 LSTM-Multi-Head Attention 

하이브리드 모델의 학습 데이터는 미국 항공 

우주국(NASA) 에임스 연구 센터의 예측 데이터 

저장소에서 제공되었다[3]. 데이터 구성은 사이클, 

시간, 전압, 전류, 커패티서 용량, 온도로 구성된다. 



기본 구성 데이터를 이용해 SOC(State of Charge)를 

식 (1)을 통해 계산하여 Data Set 에 추가한다.  

  𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) −
1

𝐶𝑛
∫ 𝒾(𝜏)𝑑𝜏,

 𝑡

 𝑡0
        (1) 

SOC 는 현재 충전량으로 초기 충전량과 사용한 총 

전류량의 차로 계산된다. Data Set 은 세 가지 Data 

Set 으로 분류한다. 

<표 1>  Data Set 

Set A Set B Set C 

V(t) 𝑉(t) V(t) 

I(t) I(t) I(t) 

T(t) T(t) T(t) 

SoC(t) SoC(t) SoC(t) 

C(t) 𝑉𝑟(t) Cd(t) 

C(t)는 Cycle, 𝑉𝑟(t)는 Voltage Recovery, 𝐶d(𝑡)는 Current 

diff 로 정의 

모델의 추정 성능은 학습 데이터의 질에 따라 결정된다. 

예시로 단순한 운전 조건 변수는 열화의 본질적인 

변화를 담지 못해 노이즈와 같이 동작할 수가 있어 

적합한 특성을 담은 특성 생성이 중요하다. 특성 

공학은 모델의 예측 성능을 개선하기 위해 기존 

데이터를 변환해 의미 있는 특징을 생성하는 

프로세스이다. SOH 추정에 있어 물리적 특성을 반영할 

수 있는 새로운 특성을 생성하는 특성 공학과 학습에 

방해가 되는 요소를 제거하는 특성 선택의 과정을 거쳐 

<표 1> Data Set 을 설정했다. 

        ∆𝑉𝑟𝑒𝑐𝑜𝑣𝑒𝑟,𝑘 = 𝑉𝑘,𝑠𝑡𝑎𝑟𝑡 − 𝑉𝑘−1,𝑒𝑛𝑑 ,       (2) 

 𝑉𝑟 (t) (∆𝑉𝑟𝑒𝑐𝑜𝑣𝑒𝑟,𝑘 )은 현재 사이클의 시작 전압과 이전 

사이클의 마지막 전압 차로 계산한다.           

(a) 

(b)

 

(c) 

<그림 2> Data set SOH Estimation, (a) Set A, (b) Set B, (c) 

Set C 

IV.  학습결과 

 <그림 2>의 (a)의 결과 그래프의 경우 C (t)는 열화 

속도는 반영하나 피크치는 반영하지 못하는 결과가 

도출되었다. (b)의 경우 특성 공학을 통해 생성한 

𝑉𝑟 (t)를 넣은 결과 비선형적 열화 특징 반영이 

정상적으로 된 것을 볼 수 있다. (c)의 Cd (t)는 열화 

속도 및 비선형적 열화 특징이 모두 반영되지 않았다. 

V. 결론  

본 논문에서는 배터리 SOH 추정 정확도 향상을 

위해 특성 공학을 적용해 세 가지 데이터 셋을 LSTM-

Multi-Head Attention 하이브리드 모델에 학습 시켜 

비교 분석하였다. 피크값 추정에 사용된 𝑉𝑟 (t) 변수가 

배터리 내부의 물리적 열화 상태 상태를 진단할 수 

있는 특징임을 입증했다. 이는 물리적 현상 기반 진단 

특징을 통해 모델의 예측 능력을 근본적으로 향상시킬 

수 있다는 특성 공학적 접근의 유효함을 명확하게 

보여준다. 향후 연구는 다양한 모델에 𝑉𝑟 (t) 변수를 

추가해 배터리 내부 물리 열화 상태 특성을 효과적으로 

반영해 모델의 성능을 상승시킬 수 있을 것이라 

기대한다. 
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