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요 약
본 논문은 5G NR 환경에서 동기 오차 등으로 인해 발생하는 거리 오차를 개선하기 위해, 실제 테스트베드에서 수집한 데이터를 활용한 DNN 

(deep neural network) 기반 거리 오차 보정 기법을 제안한다. 제안 기법은 ToA(time of arrival)로 측정한 거리와 RSRP (reference signal 
received power) 값을 입력으로 사용하여 실제 거리를 예측하도록 학습된다. 실험 결과, 제안 기법은 보정 전 거리 측정값과 비교하여 모든 측정 
구간에서 오차를 감소시켰으며, 특히 초기 오차가 가장 컸던 측정 환경에서 더욱 뛰어난 보정 성능을 보였다.

1. 서 론

 ToA(time of arrival)는 전파 도달 시간을 거리로 변환하여 위치 추정을 
가능하게 하지만, 복잡한 도심 환경에서는 다중경로 등 신호 왜곡이 
발생하여 정확도가 저하되는 문제가 존재한다 [1]. 이러한 문제를 해결하기 
위해 NLOS (non-line-of-sight) 환경 특성을 반영할 수 있는 보조 
정보가 필요하며, RSRP(reference signal received power)가 대안이 될 
수 있다. RSRP는 낮은 하드웨어 비용과 간단한 측정 절차로 널리 
사용되며, 기지국과 단말 사이의 차폐물 존재 여부와 같은 채널 환경 
정보를 내포한다 [2-3]. 그러나 RSRP와 ToA의 비선형적 관계는 기존의 
분석 모델링 기반 연구에 한계점으로 작용해왔다. 따라서 본 논문에서는 
RSRP를 이용해 거리 측정값의 오차를 보정하는 DNN (deep neural 
network) 기반 기법을 제안한다. 또한, 제안하는 모델의 실용성과 
신뢰도를 입증하기 위해 실제 5G NR 테스트베드에서 수집한 데이터를 
기반으로 성능을 검증하였다.

2. 시스템 모델

본 장에서는 ToA 및 RSRP에 대한 측정 모델을 제시한다. 추정하고자 
하는 단말의 위치는 uUEUEUE⊤∈이며, 개의 기지국은 

s BSBSBS
⊤∈ ⋯로 정의된다. 단말이 번째 기지국과 

통신한 신호의 전송 도달 시각을 각각 sent, arrival라 할 때, ToA 는 

다음과 같이 표현된다.

 arrivalsent (1)

이때, 는 백색 가우시안 잡음이며, 시각 동기로 인한 클럭 오차 등이 
포함된다.
단말과 번째 기지국 간의 거리 는 다음과 같이 계산된다.

  × (2)

여기서, 는 빛의 속도이다.
번째 기지국의 번째 안테나의 RSRP 는 다음과 같이 표현된다. 

  log ⋯ (3)

여기서 는 번째 기지국의 송신 전력, 는 경로 손실, 는 빔포밍 
이득, 는 백색 가우시안 잡음이다. 상기 식에서 경로 손실 은 반사, 
회절 등에 의한 다중 경로 현상을 포함하는 복합적인 변수이다. 이로 인해 

그림 1. 실측 데이터 수집에 사용된 5G NR 테스트베드 장비: (좌) 
기지국(gNB) 및 (우) 단말(UE)

ToA 기반 거리 측정값과 RSRP 간 해석적으로 모델링하기 어려운 비선형적 

상관관계가 발생한다. 따라서 본 논문에서는 RSRP 측정값을 채널 환경의 

비선형성을 내포하는 주요 특징으로 두고, 이를 DNN 모델의 입력으로 

활용하여 ToA 기반 거리 측정값과의 관계를 학습 한다.

3. DNN 기반 거리 오차 보정 기법

본 장에서는 ToA와 RSRP를 입력으로 사용하여 단말과 기지국 간 거리의 

오차를 보정하는 DNN 기반 기법을 제안한다. 제안 기법은 ToA 기반 초기 

거리와 RSRP 간 비선형 관계를 학습하여 오차를 예측하고 보정한다.

제안 기법의 입력 특징 벡터 z는 ToA 기반 초기 거리와 RSRP를 

결합하여 생성한다. 먼저, 번째 기지국의 개의 안테나에서 수신된 RSRP 

측정값으로 특징 벡터  ⋯
⊤∈를 구성한다. 특징 벡터 

에 ToA로 계산된 거리 측정값 를 결합하여 확장된 특징 벡터 

k  
⊤⊤∈를 생성한다. 개의 기지국으로부터 모든 특징 

벡터를 연결하여 정의되는 최종 입력 특징 벡터 z는 다음과 같다.

zk
⊤⋯k

⊤⊤ ∈× (7)  

다층 구조의 DNN 모델은 구성된 특징 벡터 z를 입력으로 하여 오차가 

보정된 거리 벡터 y를 출력한다. 모델의 번째 은닉층 출력 h과 최종 

출력은 다음과 같다.

h hWb (8)



그림 2. 5G NR 테스트베드 환경 (ETRI)

y Wb (9)

여기서 h은 이전 층의 출력에 가중치 행렬 W과 편향 b, 활성화 함수 

를 적용한 결과이며, 최종 출력는 은닉층 h로부터 계산된다. DNN 모델은 

MSE를 손실 함수로 사용하여 오차를 최소화하는 방향으로 학습된다.

yy 



i

N

∥y y∥
 (10)

제안하는 DNN 모델의 구조는 5개의 입력 특징(거리 측정값 1개, RSRP 
4개)과 1개의 출력(보정된 거리)으로 이루어진다. 모델은 총 3개의 은닉층을 
가지며, 각 은닉층은 64개, 128개, 64개의 뉴런으로 구성된다. 모든 
은닉층의 활성화 함수로는 ReLU(rectified linear unit)가 사용되었다.

4. 실험 결과 및 분석

A. 테스트베드 환경 구성
제안하는 기법의 실용성을 검증하기 위해 그림 1과 같이 5G NR 

테스트베드 장비를 구성하였다. 단말과 기지국은 각각 control PC에 
연결하였다. gNB의 송신 주파수는 4.5 GHz 중심 주파수와 100 MHz 
대역폭을 갖는 5G NR n79 대역을 사용하였고, 신호 송수신을 위해 
기지국은 4개의 송신 안테나, 단말은 1개의 수신 안테나로 구성하였다.
데이터 수집은 그림 2에 나타난 ETRI(한국전자통신연구원)의 외부 

환경에서 진행되었다. 단말과 기지국 사이의 거리를 10m, 20m, 30m, 
150m, 170m, 248m, 350m로 설정하고, 각 거리 지점에서 100개의 
데이터 샘플을 수집하여 총 700개의 데이터셋을 구축하였다. 수집된 
데이터는 ToA 기반 측정 거리와 RSRP 값을 포함한다.

B. DNN 모델의 오차 보정 성능 분석
그림 3과 표 1은 제안 기법을 적용하기 전 거리 오차(raw distance)와 

모델을 통해 보정된 거리 오차(AI-based distance)를 비교한 결과이다. 
실험 결과, 제안 기법은 모든 측정 구간에서 평균 거리 오차를 감소시키는 
것을 확인하였다. 특히, 248m 구간에서 기존 거리의 평균 오차는 
17.04m에 달했으나, 제안 기법을 적용한 후 3.51m로 약 79.4% 감소했다. 
또한, 170m 구간에서는 평균 오차가 10.94m에서 0.93m로 91.5% 이상 
감소하여 제안 기법의 높은 보정 성능을 입증했다. 또한, 평균 오차 
감소뿐만 아니라 그림 3의 오차 막대에서 볼 수 있듯 오차의 표준편차도 
감소하였다. 이는 제안 기법이 ToA와 RSRP의 비선형적 관계를 학습하여 
거리 측정 정확도를 실질적으로 개선할 수 있음을 보여준다.

그림 3. DNN 기반 거리 오차 보정 결과

표 1. DNN 모델 적용 전후 거리 오차 비교

실제 거리 보정 전 거리 오차 평균 보정 후 거리 오차 평균
10 m 5.79 m 1.76 m
20 m 2.55 m 2.21 m
30 m 4.06 m 1.31 m
150 m 3.61 m 1.73 m
170 m 10.94 m 0.93 m
248 m 17.04 m 3.51 m
350 m 6.85 m 2.13 m

5. 결론
본 논문에서는 5G NR 통신 환경에서 동기 오차 등으로 인해 발생하는 

거리 오차를 개선하기 위해, RSRP를 이용해 거리 측정값의 오차를 
보정하는 DNN 기반 기법을 제안했다. 제안 기법은 ToA로 측정한 초기 
거리 값과 채널 환경 정보를 내포하는 RSRP를 입력으로 사용하여, 두 정보 
간의 비선형적 관계를 학습하고 거리 오차를 효과적으로 보정한다. 제안 
기법의 실용성과 신뢰도를 입증하기 위해 ETRI의 5G NR 테스트베드 
환경에서 직접 수집한 데이터를 기반으로 성능을 검증하였다. 실험 결과, 
제안 기법은 모든 측정 구간에서 거리 오차를 감소시켰다. 이는 제안 기법이 
실제 환경의 복잡한 신호 왜곡 특성을 효과적으로 학습하여 거리 측정의 
정확성과 안정성을 향상시킬 수 있음을 보여준다.
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