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Abstract—This paper examines how feature representation
and parameter efficiency in image classification are affected by
quantum circuit layers. The MNIST dataset is used to compare
three models: a classical Convolutional Neural Network (CNN), a
Hybrid Quantum-Classical model that incorporates a variational
quantum circuit and a Quantum-only model. Using feature
space analysis, the study evaluates classification accuracy and
analyzes feature transformation behavior. Results show that the
hybrid model outperforms the CNN in terms of accuracy while
reducing the number of parameters. In contrast, the quantum-
only model performs poorly due to its small representational
capacity. Results show that quantum layers can reduce model size
and improve feature compactness, which makes hybrid quantum
architectures a feasible option for near-term quantum computing.

Index Terms—Hybrid quantum-classical learning, quantum
computing, variational circuits, MNIST, feature learning

I. INTRODUCTION

Deep learning models like Convolutional Neural Networks
(CNNs) have achieved impressive performance in image
classification tasks. However, their scalability in resource-
constrained situations is limited by their frequent requirement
for high computational resources and large parameter counts
[1]. By utilizing quantum features like superposition and
entanglement to improve learning efficiency and lower model
complexity, quantum machine learning (QML) has emerged
as a potential solution [2]. In comparison to classical
models, recent research has demonstrated that hybrid quantum-
classical designs can enhance feature learning while utilizing
fewer parameters [3], [4].

This study evaluates the impact of quantum layers on
learned feature representations and the possibility of parameter
reduction without significant loss in accuracy. Unlike previous
work that focuses only on the accuracy of hybrid models [5],
this research compares classical, quantum and hybrid models
using PCA-based visualization to analyze feature learning
behavior and evaluates model complexity in terms of trainable
parameters and classification performance.

Key research objectives include:
• Analyze how quantum layers change the feature space.
• Compare model-to-model parameter efficiency.
• Evaluate the consistency of classification performance.

II. METHODOLOGY

The experimental framework consists of three classification
architectures trained on MNIST using PyTorch [6] and

PennyLane [7]. The system design used in this study is
presented in Fig 1.

A. Dataset and Preprocessing
The MNIST dataset [8] includes 70,000 handwritten

digit images (28x28 pixels). Tensor conversion and data
normalization were applied. The dataset was divided into 80%
for training, 10% for validation and 10% for testing.

B. Classical CNN Model
Two convolutional layers with max-pooling and ReLU

activation compose the reference model, which is followed
by fully connected layers. It learns spatial features from pixel
neighbourhoods.

C. Hybrid Quantum-Classical Model
A variational quantum circuit is used instead of a

fully connected layer in the hybrid model, which has the
same convolutional backbone as the CNN. AngleEmbedding
is used to encode each input vector x into qubits,
while StronglyEntanglingLayers is used for processing. The
parameterized unitary transformation [9] is given by:

U(θ) =

L∏
l=1

Ul(θl)

Pauli-Z operator expectation values are used to determine the
quantum circuit’s output:

zi = ⟨ψ | Zi | ψ⟩

These quantum features are fed into the final softmax classifier.

D. Quantum-only Model
The input image is flattened and projected into four latent

features, which are then stored into qubits for purely quantum
learning. It has the fewest parameters but lacks convolutional
extraction.

E. Training Setup
Cross-entropy loss was used:

L = −
K∑

k=1

yk log(ŷk)

AdamW was used for optimization across 30 epochs with a
learning rate of 0.0005. Early stopping was used to avoid
overfitting.
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Fig. 1: Overview of classical, hybrid quantum-classical and quantum-only model architectures for image classification

III. RESULTS AND DISCUSSION

The performance of each model is shown in Table I.
The CNN achieved the highest accuracy due to effective
spatial feature learning. The hybrid model was able to achieve
comparable efficiency with fewer parameters by replacing a
dense layer with a quantum layer. The poor performance of
the quantum-only model suggests that convolutional priors are
crucial for image learning.

TABLE I: Performance comparison of CNN, Hybrid and
Quantum-only models on the MNIST dataset.

Model Parameters Accuracy (%) Precision (%) Recall (%) F1-score (%)
CNN 155,402 99.33 99.33 99.32 99.32

Hybrid Quantum-Classical 58,790 98.08 98.08 98.05 98.06
Quantum-only 3,238 78.54 78.24 77.76 76.62

Fig. 2: PCA feature space comparison of CNN, Hybrid and
Quantum-only models

As illustrated in Fig. 2, PCA feature space analysis showed
different feature learning behaviors for each model. Although
it showed clear overlap between similar digits like 3, 5 and 8,
the CNN model formed class clusters. Particularly for digits
0, 1 and 6, the hybrid model achieved more compact and
separable clusters, indicating that the quantum layer improved
discriminative representation. In contrast, the quantum-only
model showed a high degree of feature overlap, suggesting that
feature learning was limited. These findings support the hybrid
architecture by demonstrating that quantum entanglement only
improves feature expressiveness when combined with classical
convolutional learning.

IV. CONCLUSION & FUTURE WORK

This study demonstrates how dense classical layers can
be replaced with quantum layers to increase parameter

efficiency while maintaining a reasonable level of classification
accuracy. Performance and efficiency are balanced in the
hybrid approach, making it suitable for near-term quantum
devices. Future research will explore adaptive embedding
techniques, deeper quantum circuits and scalability to complex
visual datasets like CIFAR-10.
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