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Abstract—Quantum computing threatens IoT security as tradi-
tional cryptography becomes vulnerable. We present a quantum-
safe IoT framework combining Post-Quantum Cryptography
(PQC), federated learning (FL), and TinyML. The framework
uses: (1) FL for decentralized crypto-selection without sharing
raw data, (2) a 15KB TinyML detector for anomalous traffic
indicative of HNDL activity, and (3) context-aware protocol
adaptation. Our architecture categorizes IoT devices into three
classes: Class 0 (ultra-constrained) uses AES-256-GCM, Class
1 (constrained) uses Kyber-512, and gateways/cloud use Kyber-
768/1024. In simulation, the framework maintains quantum
resistance with 35% lower energy than static PQC and 94%
HNDL anomaly detection (3% FPR) at modest overhead.

Index Terms—Post-Quantum Cryptography, IoT Security, Fed-
erated Learning, TinyML, Edge AI, HNDL Anomaly Detection
(Harvest-Now-Decrypt-Later), CRYSTALS-Kyber

Acronyms: HNDL–Harvest-Now-Decrypt-Later; PQC–Post-
Quantum Cryptography; FL–Federated Learning; TinyML–
Tiny Machine Learning; IoT–Internet of Things; AES–
Advanced Encryption Standard; GCM–Galois/Counter Mode;
NIST–National Institute of Standards and Technology; Kyber–
CRYSTALS-Kyber; C0/C1/C2–Device Classes 0/1/2.

I. INTRODUCTION

The Internet of Things (IoT) ecosystem, projected to exceed
75 billion devices by 2025 [1], faces an existential security
threat from quantum computing. Shor’s algorithm [2] can
break current cryptographic protocols (RSA, ECC) in poly-
nomial time, compromising IoT security infrastructure. With
device lifetimes spanning 10-20 years and "harvest now, de-
crypt later" attacks already occurring [3], immediate migration
to Post-Quantum Cryptography (PQC) is essential.

Challenge: PQC algorithms require 2-10× more resources
than classical cryptography [4], making uniform deployment
impractical for resource-constrained IoT devices (<50KB
RAM). Existing solutions use static protocol assignment, ig-
noring dynamic context (battery levels, network conditions,
real-time threats) and lack mechanisms to detect quantum-era
attacks.

Our Contribution: We propose an intelligent quantum-
safe IoT framework with three novel components: (1) Fed-
erated Learning-based Crypto Selection—devices collabora-
tively learn an optimal security policy in a decentralized man-
ner, avoiding a single point of failure and minimizing transmis-
sion of potentially sensitive operational metadata (no raw data
shared); (2) TinyML HNDL Anomaly Detector—a 15KB neural

Fig. 1: Quantum-safe IoT Architecture with AI/ML Integration

network on gateways detects anomalous traffic signatures
associated with HNDL attacks (e.g., unusually large, sustained
data exfiltration to unknown endpoints) with 94% accuracy;
(3) Context-Aware Protocol Adaptation—dynamically adjusts
cryptography based on battery (<20% → lightweight crypto),
threat level (HNDL suspected → upgrade to Kyber-1024), and
network latency.

II. RELATED WORK

NIST standardized PQC in 2024 [4], with CRYSTALS-
Kyber favored for constrained environments. Prior IoT efforts
are largely static or hardware-dependent and do not unite PQC
with decentralized, adaptive selection and HNDL anomaly de-
tection at the edge. Our framework integrates these elements.

III. ARCHITECTURE

We present an intelligent three-layer architecture integrat-
ing AI-driven security: (1) Device Layer: Class 0 devices
(<10KB RAM) use pre-shared AES-256-GCM keys. Class 1
devices (10-50KB RAM) employ Kyber-512 and participate in
federated learning by sharing model gradients (not raw data) to
collaboratively improve crypto-selection. (2) Gateway Layer:
Enhanced with two AI modules—TinyML HNDL Anomaly
Detector (15KB neural network monitoring for anomalous
traffic signatures indicative of large-scale data harvesting, e.g.,



sustained bulk capture to unknown endpoints) and FL Aggre-
gator (combines device gradients to update a global crypto-
selection model without centralizing raw telemetry). The de-
tector operates on lightweight flow-level features (e.g., burst
length, inter-arrival variance, and payload statistics) efficiently
extractable at gateways. Uses Kyber-768 and context-aware
switching. (3) Cloud Layer: Hosts FL training server, threat
intelligence database, and employs Kyber-1024 for maximum
security.

Context-Aware Selection: The gateway’s ML model takes
inputs: [RAM, Battery%, Network Latency, Threat Score]
and outputs optimal crypto suite. Example: If battery <20%,
device switches from Kyber-512 to AES-256; if HNDL-like
behavior is suspected, gateway escalates to Kyber-1024. In
practice, HNDL-related anomalies may present as unusu-
ally large, sustained data exfiltration to unknown endpoints,
long-lived sessions with atypical ACK/throughput patterns,
or coordinated bulk capture across devices. Threat model:
We assume a passive network adversary capable of bulk
traffic capture (HNDL) and delayed decryption, but no device
compromise or key extraction. Crypto-agility: Policy updates
(e.g., Kyber parameter set changes) are applied at the gateway
and cloud without device firmware changes, enabling imme-
diate roll-forward/rollback based on observed risk.

IV. EVALUATION

A. Experimental Setup

We simulate with liboqs (v0.9), TensorFlow Lite (v2.14),
and PySyft (v0.8). Profiles: C0 (M0+, 8KB), C1 (M4, 32KB),
C2 (A53, 128MB). Topology: 20 C0, 10 C1, 2 gateways, 1
cloud. Energy from cycle counts mapped to device power
models. Detector: 1̃5KB (int8), 1̃0K params, 2̃0K MACs; flow
features include burst length, inter-arrival variance, destination
novelty, duration, payload stats.

B. Comparison Baselines

Baselines: Classical (ECDHE-P256 + AES-128), Uniform
PQC (Kyber-768), Static (adaptive PQC, no AI), Intelli-
gent (FL+TinyML). Data: 10K samples (balanced; simulated
HNDL includes bulk capture, atypical handshakes, long-lived
low-entropy flows). FL: 50 rounds, 10 C1 devices.

V. RESULTS AND DISCUSSION

A. Cryptographic Performance

Uniform PQC fails on C0 devices due to memory limits.
In simulation, the framework achieves 2.5× speedup on C1
vs. uniform while maintaining ≥100-bit security. Latency
overhead was measured as end-to-end encryption+handshake
time relative to Classical over 100 trials per device class
(median reported).

B. AI-Driven Optimizations

Energy (simulated): Estimated 35% reduction vs. static
PQC (C1: 244 µJ/day vs. 375 µJ/day) via low-battery AES
switching; based on cycle counts and power models. HNDL
Detection: 94% accuracy, 3% FPR, 8ms, 15KB, 47/50 flagged.

In practice, a 3% FPR implies ≤3 false alerts per 100 benign
flows; we mitigate via a persistence threshold (N consecutive
flags) and gateway whitelisting. FL: Converged in 32 rounds
with 2.3% overhead; no raw data shared. Memory: Gateway
18.2KB (3.2KB crypto + 15KB ML). Results are consistent
across 3 random seeds (±1.1% accuracy) and within 95%
bootstrap CIs. Deployment is feasible on commodity gateways
(>64MB RAM), and the detector runs at > 100 Hz in our
timing.

VI. CONCLUSION

This paper presented a quantum-safe IoT framework in-
tegrating federated learning and TinyML for IoT security.
Our three novel contributions—(1) decentralized FL-based
crypto selection that avoids a single point of failure, (2)
15KB TinyML HNDL anomaly detector (94% accuracy), and
(3) context-aware protocol adaptation—achieve quantum resis-
tance with 35% energy savings vs. static PQC. Unlike existing
work, the framework dynamically adapts to battery levels,
threat intelligence, and network conditions while detecting
HNDL-style large-scale data harvesting in real time.

Limitations: Our evaluation relies on simulation assump-
tions. The TinyML model must be retrained for each deploy-
ment domain and protocol. FL convergence can vary under
device heterogeneity. The false positive rate depends on the
traffic mix, although thresholding and whitelisting mitigate
nuisance alerts. A formal analysis of privacy and robustness
is left to future work.

Future Work: We plan hardware validation on ESP32,
STM32, and Raspberry Pi. We will broaden TinyML coverage
to include side-channel and related threats. We will study
formal privacy and robustness guarantees, such as differential
privacy. We will integrate PQC into MQTT and CoAP/DTLS.
We also plan cross-domain federated learning across hetero-
geneous IoT ecosystems.
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