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요 약

본 조사는 차세대이동통신 시대의 네트워크 슬라이싱을 연합 심층 강화학습(Federated Deep Reinforcement Learning, FDRL) 관점에서 간명히 정리
한다. 개방형 무선접속망(Open Radio Access Network, O-RAN)의 RIC (Radio Intelligent Controller) 확산을 배경으로, 최신 연구 동향을 MDP
(Markov Decision Process) 및 연합 체계 틀에서 재구성하여 서술한다. 연합 주기, 참여자 선택, near-RT (Real-Time) 및 non-RT RIC 분업이 확장
성, 프라이버시, 수렴성에 미치는 효과를 통합적으로 해석하고, 상용 확장을 위한 안전성, 공정성, 설명 가능성 관련 과제를 제시한다.

Ⅰ. 서 론

네트워크 슬라이싱은 서비스마다 상이한 지연, 신뢰도, 처리량, 에너지

등의 요구를 SLA (Service Level Agreement) 단위로 표현하고, 이를 무

선접속망(Radio Access Network, RAN)-전송-코어 전구간에걸쳐독립

적으로 보장하려는 시도에서 출발한다. 초기 중앙집중형 규칙 기반 제어

및 휴리스틱 기반 연구는 트래픽과 무선 환경의 불확실성이 증가하고

xAPP이 다수 공존하는 개방형 무선접속망(Open RAN, O-RAN)이 확산

되면서, 비정상적이고 부분 관측적인 환경에서도시행착오를 통해 정책을

고도화할 수 있는 심층 강화학습(Deep Reinforcement Learning, DRL)

[1-2] 기반 연구로 중심을 옮겼다. 그러나 이는 단일 셀의 데이터에만 의

존할때일반화와견고성의한계를보임에따라, 각 위치의 에이전트가로

컬 데이터를 외부로 유출하지 않고도 전역 모델을 개선할 수있도록 하는

연합 학습(Federated Learning, FL)과 결합하여이후연합 심층 강화학습

(Federated Deep Reinforcement Learning, FDRL)으로 발전했다. 이는

near-RT (Real-Time) 및 non-RT RIC (Radio Intelligent Controller),

단말과 기지국, 엣지와 클라우드에 분산된 에이전트들을 하나의 학습 생

태계로 묶어, 복수의 슬라이스가 공유 인프라에서 충돌 없이 진화하도록

만드는 토대를 제공한다 [3]. 또한, 공통적으로 상태-행동-보상으로 정식

화된 MDP (Markov Decision Process) 위에 DRL 정책을 학습하고, FL

집계를통해전역모델을갱신한다. 본 연구는이 틀위에서 학습모델위

치, 집계 주기, 참여자 선택, 그리고 업데이트 압축이 성능과 오버헤드에

어떤 식으로 반영되는지 최신 연구 동향을 조사한다.

Ⅱ. 본론

1. 연구 동향

접속제어와 단말 연관 연구는 FL의 이점을 가장 직접적으로 드러낸다.

단말은 로컬에서관측한 무선 환경과 부하 정보를 바탕으로 접속 및 핸드

오버정책을 RL로 학습하고, 기지국혹은 RIC는 수평연합을통해분산된

파라미터를 집계하여 전역 정책을 정제한다. 동시에 민감한 원시 데이터

를외부로내보내지않기위해, 암호화된연합파티에서수직연합을수행

해 특징 수준의 정보를 통합함으로써 다양한 셀과 슬라이스의 패턴을 포

착한다. 이러한하이브리드 FL 구조는 처리량개선과 통신오버헤드 절감

을 함께 달성하면서, 다수 단말의 이질적 경험을 효율적으로 한데 모으는

방식으로 작동할 수 있음을 보인다 [4-5]. 산업용 사물인터넷 시나리오에

서는 DFQL (Deep Federated Q-Learning)을 활용한다. 간헐적 트래픽과

서로다른 KPI (Key Performance Indicator) 요구를 전제로하여전력및

SF (Spreading Factor) 등 무선 제어변수를슬라이스별보상에 정합되도

록조정하고, 각 단말및 셀의 네트워크 모델은 로컬에서학습되어파라미

터만 연합 집계된다. 이 구조는 중앙집중식과 유사한 수렴 특성을 유지하

면서도연합통신량을줄이고, 부하변동이큰환경에서 SLA 위반율을억

제하는 경향을 보인다 [6].

자원할당과 xAPP 조정에서는 다중 에이전트의 협업이 핵심이다. 전력

제어 xAPP과 슬라이스자원 xAPP이 독립적으로최적화될 경우 정책 충

돌로 이어지기쉬운데, FDRL은 두에이전트를연합체계안에서공동훈

련하여 조화를 유도한다. [7]은 eMBB (enhanced Mobile Broadband) 처

리량 상승과 URLLC (Ultra-Reliable Low Latency Communications) 지

연 감소를 보고하며, 이는 분산된 관찰의 다양성과 프라이버시 보존이라

는 FL의 장점이현실의 O-RAN 운영 문제에 직접적인 성과로 연결될 수

있음을 시사한다. 동시에연합주기와참여자선택, 그리고업데이트의 압

축은 통신 오버헤드를 좌우하므로, 트래픽 유사도 기반의 에이전트 군집

화나 선택적 참여가 제안되어 확장성과 안정성을 도모한다 [8].

VNF (Virtual Network Functions) 분할과 엣지 오케스트레이션의 맥

락에서 CU (Centralized Unit) 및 DU (Distributed Unit) 사이에서 기능

블록을 동적으로 재배치하는 문제가 중요하다. 엣지에 배치된에이전트가

로컬 지표를 바탕으로 분할 결정을 내리고, near-RT RIC에서 연합으로

정책을 집계하면, 재구성 비용을 줄이면서 지연 한계를 만족시키는 방향

으로진화할수있다. 보상 설계는마이그레이션비용과성능이득사이의



균형을 요구하며, 연합은 현장별 이질성을 보존한 채 정책의 일반화를 촉

진한다 [9]. 차량망과같은고속이동시나리오에서는서비스클래스, 차량

유형, 응용 계층으로 분해된 계층형 O-RAN 위에 FDRL을 결합하여, 계

층 간자원조율을 통해 불안정한 채널과급변하는부하에서의 견고한성

능을 달성하려는 시도를 보고한다 [10]. 하나의 애플리케이션 인스턴스와

인프라를여러 파티가공유하는멀티테넌트 환경에서는인프라제공자와

MVNO (Mobile Virtual Network Operator), 그리고 단말 사이의 상호작

용을 두 계층으로나누어, 상위 계층의자원결정을 FDRL로 탐색하고 하

위 계층의 자원 배분을 게임 이론과 결합해 유틸리티를 극대화하는 혼합

모델이 제안된다 [11]. 이 접근은프라이버시를유지하면서도 시장을정책

학습에 반영할 수 있다는 장점이 있다. 한편 대규모 RAN에서의 통신 비

용부담과데이터이질성문제를완화하기위해, 트래픽양상에따라 에이

전트를군집화하고 필요한군집만선별적으로연합에 참여시키는특화전

략도 유용한 대안으로 부상한다 [8].

2. 향후 과제

실제 구현에서는 학습과 집계의 위치가 가장 먼저 결정된다. 단말과 기

지국 수준의 배치는 원시데이터 보존과빠른반응을 보장하지만 연산자

원이 제한적이다. near-RT RIC은 수십 ms에서 수백 ms 수준의 제어 주

기를 담당하며, 다수 xAPP 간의 조정을 실질적으로 수행하기에 적합하

다. non-RT RIC과 클라우드는장기적 모델 관리와 정책 증류, 지식 이전

의중심이된다. 이들 사이의경계에서는모델버저닝과롤백, A/B 검증과

드리프트탐지가중요하며, 연합 참여자 선정과 업데이트빈도, 그리고통

신량을 줄이기 위한업데이트압축이 통신비용을좌우한다 [7-8]. 프라이

버시와 보안의 관점에서는 차등 프라이버시 및 안전한 집계와 같은 기법

이필수적이며, 비잔틴참여자에대한강건집계나신뢰점수 기반의 참여

통제가 요구된다. 무엇보다 제약을 수반하는 SLA 환경에서는 보상에 라

그랑주 승수를 도입한제약 DRL이 안정적학습과안전한 배포를위해현

실적인 해법이 된다 [9].

향후 연구는이기종상태및행동공간을가진에이전트간의지식이전

을보다자연스럽게만들필요가있다. 공통 표현을학습하는표현학습과

다중 작업 학습, 정책 증류는 유력한 도구이지만, 서로 다른 관측과 제약

을 지닌 xAPP 사이에서 어느 수준까지 지식이 재사용 가능한지에 대한

체계적인검증이부족하다 [8]. 공정성과격리보장은멀티 테넌트 운영의

핵심이며, 공정성 인식 보상과 제약 DRL, 그리고 정책의 설명 가능성을

결합한 도구가 필요하다 [4-5]. 확장성과통신 비용절감을 위한에이전트

군집 선택, 적응형 연합 주기, 이벤트 기반 동기화, 모델 업데이트의 압축

은 실제 배포에서 필수적인 기술 요소이다 [8]. 마지막으로 시장 및 기술

통합의관점에서, 단말-MVNO-InP (Infrastructure Provider) 간 시장 메

커니즘과 기술적 자원 제어를 공동으로 최적화하는 프레임워크가 요구되

며, 이 과정에서 디지털 트윈을 활용한 시나리오기반 검증은 안전한 온라

인 학습의 현실적 경로이다 [11].

Ⅲ. 결론

본 조사는 접속제어와 단말 연관, 자원할당과 xAPP 조정, VNF 분할과

엣지 오케스트레이션, 계층형 O-RAN, 멀티 테넌트 자원거래, 그리고 에

이전트특화전략의흐름을하나로연결하여, 학습 및 집계의 위치와 연합

체계, 그리고운영파이프라인의 결정이 성능과 비용, 안전성에어떤형태

로 반영되는지를 정리하였다. 다음 단계의 과제는 제약 하에서의 안전한

온라인학습과설명가능한운영, 통신 비용과 탄소 발자국을 고려한 연합

최적화, 그리고 시장과 기술을 연결하는통합된 오케스트레이션의 구현이

다. 실제 배포의제약을고려한벤치마크와공개데이터및코드의축적은

그 출발점이 될 수 있다.
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