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요 약  

 
본 논문은 무선 엣지 네트워크에서의 연학학습에서 희소하고 상이한 로컬 데이터 분포와 제한적인 통신 자원으로 인한 

과적합, 학습 지연, 수렴 불안정성 문제를 완화하기 위한 해결책으로 Bayesian model reduction(BMR) 기반 적응적 

연합학습(FL: Federated learning) 기법을 제안한다. 즉, 제안 기법은 Bayesian 접근 기반의 지역학습 및 

종합(aggregation)을 통해 학습 불안정성을 완화하고, BMR 을 통한 모델 경량화를 수행함으로써 Bayesian 접근법에 

따른 추가적은 통신 부하를 효과적으로 줄일 수 있다. 

 

 

Ⅰ. 서 론  

무선 엣지 네트워크 환경에서의 연합학습에서는 통신 

병목이 학습 속도를 결정하는 핵심 요인이며, 학습 

결과를 확률 분포 형태로 나타내는 Bayesian 

연합학습(FL: Federated learning)에서는 전송량 

증가로 인해 학습지연이 더욱 악화될 수 있다 [1, 2, 3]. 

이를 완화하기 위한 효과적인 전략으로 모델 경량화를 

고려할 수 있으며, 모델 파라미터의 불확실성 정보에 

기반한 모델 경량화가 중앙 학습 환경하에서 폭넓게 

연구되어 왔다. 하지만 이들 대부분은 SNR 혹은 

SNP 와 같은 경험적(heuristic) 지표에 의존하기 

때문에, 그 성능이 임계값 선택에 따라 민감하고, 

pruning 이 학습 목적함수(ELBO/VFE) 최소화와의 

연관성을 찾기 어려운 단점을 갖는다. 이론에 기반한 

모델 경량화 기법인 Bayesian Model Reduction 

(BMR)을 신경망에 적용이 최근 연구되어, 기존 

지표보다 효과적인 경량화가 가능함을 보였다. 이에 본 

논문은 BMR 과 결합된 구조의 새로운 FL 

프레임워크를 제안해 학습 불안정성 완화는 물론 통신 

자원이 제한된 환경에서도 Bayesian 접근 도입으로 

인한 지나친 통신 지연이 발생하지 않도록 한다. 

 

Ⅱ. 본 론  

BMR 은 큰 베이지안 모델에서 일부 파라미터를 

제거해 만든 하위모델들을 재평가 없이 빠르게 

비교하는 기법이다. 이는 각 파라미터 제거에 따른 

Variational Free Energy(VFE) 변화량, ΔF 를 

효율적으로 계산할 수 있게 한다. VFE 는 

변분추론(variational inference)기반의 베이지안 

학습에서 목적함수로써, 결국 BMR 을 통해 베이지안 

학습과 모델 경량화는 동일한 목표를 갖게 된다 [3]. 

제안하는 FL 프레임워크에서는 단말의 지역학습 후 

얻어진 지역 posterior 분포를 기반으로 BMR 을 

적용해 경량화된 모델을 구성하고 이를 전송함으로써, 

성능 열화 없이 통신 부하를 효과적으로 줄일 수 있다.  

본 연구에서 고려하는 무선 엣지 네트워크는 서버 

역할을 수행하는 하나의 기지국과 𝐾  개의 단말로 

구성되어 있으며, 각 단말 𝑘 ∈ {1, 2, … , 𝐾} 는 지역 

데이터셋 𝐷𝑘 를 갖는다. 이와 같은 환경에서 제한된 

통신 자원으로 연합학습을 통해 모델 파라미터 𝐰 ∈

ℝ𝑑 에 대한 전역 posterior 분포 𝑝(𝐰|{𝐷𝑘}𝑘∈ 𝐾) 를 

도출하는 것을 목표로 한다. 현실적 제약을 고려해 

posterior 분포는 변분 추론(variational inference)을 

기반으로 mean-field Gaussian 분포로 근사한다. 

따라서 posterior 는 평균과 표준편차로 구성된 변분 

파라미터(variational parameters) 𝛉 = (𝛍, 𝛔) ∈ ℝ2𝑑 로 

표현된 수 있다. 제안 기법의 구체적인 동작은 다음과 

같다. 

①  전역 posterior 배포: 훈련 라운드 𝑡 가 

시작되면, 서버는 전역 posterior 분포 𝑞𝛉𝑡
(𝐰)에 

대한 정보를 모든 단말들에게 전송한다. 

② 변분 추론 기반 지역 학습: 각 단말 𝑘 는 지역 

posterior 분포와의 KL divergence 를 최소화할 

수 있는 변분 파라미터를 다음 최적화 문제를 

풀어 도출한다 
𝛉𝑡,𝑘 = argmin𝛉 KL[𝑞𝛉(𝐰)‖𝑝(𝐰|𝒟𝑘)]    

= argmin𝛉 KL[𝑞𝛉(𝐰)‖𝑝(𝐰)] − 𝔼𝑞𝛉(𝐰)[log 𝑝(𝒟𝑘|𝐰) ].       

(2) 

③ 지역 모델 경량화: BMR 을 기반으로 𝑖번째 모델 

파라미터 𝑤𝑖가 제거되었을 때, VFE 의 변화량을 

기반으로 해당 파라미터의 중요도를 판별해 

제거해 기지국으로 전송한다. 즉, 𝑖 번째 모델 

파라미터 𝑤𝑖에 대한 VFE 변화량은 다음과 같다.  

Δ𝐹𝑡,𝑘,𝑖 = log ∫ 𝑞𝜃𝑡,𝑘,𝑖
(𝑤)

𝑝(𝑤)

𝑞𝜃𝑡,𝑖
(𝑤)

𝑑𝑤,      (3) 



여기서 𝜃𝑡,𝑘,𝑖 = (𝜇𝑡,𝑘,𝑖 , 𝜎𝑡,𝑘,𝑖) 는 𝑖 번째 지역 모델 

파라미터의 평균과 표준편차, 𝜃𝑡,𝑖 = (𝜇𝑡,𝑖 , 𝜎𝑡,𝑖) 는 

𝑖 번째 전역 모델 파라미터의 평균과 표준편차, 

𝑝 (𝑤) = 𝒩(𝑤|0, 𝜖), 𝜖 ≈ 0. 

④ 지역 posterior 분포 합성을 통한 전역 
posterior 갱신: 경량화된 지역 posterior 

분포들의 곱연산을 통해 전역 posterior 분포를 

갱신한다. 이와 같은 곱연산은 다수의 

확률분포를 대표하는 하나의 나타낼 때, 정보 

손실을 최소화 할 수 있는 방법이다. 즉, 갱신된 

전역 posterior 분포는 다음과 같다. 

𝑞𝛉𝑡+1(𝜃) = 𝐶 ∏ 𝑞θ̃𝑡,𝑘
(𝐰)𝑘∈𝒦          (4) 

여기서 C는 분포의 적분값을 1 로 만들기 위한 

정규화 상수이고, 𝛉̃𝑡,𝑘 ∈ ℝ2𝑑  단말 𝑘 로부터 

수신한 경량화 변분 파라미터를 나타낸다. 

⑤ 수렴 조건 확인 및 반복: 전역 posterior 분포가 

수렴 조건을 만족하는지 확인하고, 수렴하지 

않았다면, 훈련 라운드 𝑡 + 1 을 시작하고 단계 

①~④를 수행한다. 

 

 
그림 1. 모델 경량화 비율에 따른 성능 변화 

 

제안 기법에 대한 구현 및 검증에 앞서, 보다 간단한 

중앙학습 환경에서 BMR 접근법의 효용성을 시험해 보

았다. 4 개의 완전연결층(784*224*672*25*10)으로 구

성된MLP(Multy Layer Perceptrone)을 모델로 사용하

여, MNIST 분류 문제에서의 성능 이득을 살펴보았다. 

그림1은 VFE 변화율 기준으로 한 모델 파라미터 제거 

비율 변화에 따른 분류 정확도를 실험한 결과이다. 제

거 비율이 증가함에 따라 성능이 감소하지만 낮은 중요

도의 파라미터를 우선적으로 제거하기 때문에 이에 따

른 성능 저하는 미미함을 확인할 수 있었다. 특히, 전

체 파라미터 중 97%를 제거한 경우에도 정확도 저하

가 약 3%에 불과함을 확인하였다. 이는 BMR 기반 대

규모 파라미터 감축이 성능 저하 없이 가능함을 시사하

며 Bayesian FL 에서의 과도한 전송량으로 인한 학습 

지연을 완화할 수 있는 유효한 대안이 될 수 있음을 의

미한다. 

 

Ⅲ. 결 론   

본 연구에서는 BMR 을 통해 Bayesian FL 의 통신 

부하를 효과적으로 낮출 수 있는 기법에 대해 제안하였

다. 현재까지는 제안 기법에 대한 가능성만 검증한 상

태로, 추가적인 연구 진행을 통해 연합학습 환경에서의 

수렴 속도 및 정확도 측면에서의 성능을 분석할 계획이

다.  
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