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요 약  

 
  본 논문은 virtualized radio access network (vRAN) 시스템에서 virtual network function (VNF) 배치를 효율적으로 

수행하기 위한 그래프 신경망 기반의 최적화 기법을 제안한다. vRAN 을 이진 그래프로 표현하고, 각 노드와 링크 간 

상호작용을 효과적으로 학습하도록 모델을 설계한다. 모의실험을 통해 제안 기법의 효율성을 입증한다. 

 

Ⅰ. 서 론  

최근 급증하는 무선 트래픽을 효과적으로 처리하기 

위해 네트워크 가상화를 수행하는 virtualized radio 

access network (vRAN) 시스템이 주목받고 있다 [1]. 

vRAN 에서는 virtual network function (VNF)를 각 

노드에 적절히 배치하여 비용을 최소화할 수 있다. 

최적의 VNF 배치 솔루션을 전통적인 최적화 

알고리즘으로 도출할 수 있지만, 계산 복잡도가 높아 

대규모 네트워크나 실시간 환경에 적용하기 어렵다. 

한편, 최근 무선 네트워크 자원 관리 분야에서 graph 

neural network (GNN)이 활발히 사용되고 있다[2]. 특히, 

그래프의 노드와 간선을 통합적으로 활용하는 edge-

node GNN (ENGNN)은 종래 GNN 모델의 성능을 크게 

개선하였다[3]. 

본 논문에서는 ENGNN 을 활용하여 vRAN 시스템의 

비용 최소화를 위한 VNF 배치 방식을 제안한다. 

모의실험을 통해 제안 방법의 우수성을 성능과 계산 

효율 측면에서 입증한다. 

 

Ⅱ. 시스템 모델  

𝑁 개의 distributed unit (DU) 및 𝑀 개의 cloud unit 

(CU)로 구성된 vRAN 시스템을 고려한다. DU 𝑛 ∈ 𝒩 =

{1, ⋯ , 𝑁}은 radio unit (RU)로부터 수신한 data traffic 

𝜆𝑛 을 처리해야 한다. 그러나 제한된 연산 능력을 지닌 

DU 만으로는 모든 네트워크 traffic 을 해결하기 어렵다. 

이를 위해 DU는 할당된 network function을 가상화하여 

세 개의 VNF 𝑓1 (PHY), 𝑓2 (MAC), 𝑓3 (PDCP)로 분할하고 

CU와 협력적으로 처리한다. 

본 논문에서는 VNF 의 할당 전략을 최적화하여 vRAN 

시스템의 에너지 소모량과 지연시간을 동시에 

최소화한다. 이진 변수 𝑥1𝑛 , 𝑥2𝑛 , 𝑥3𝑛 을 각각 DU 𝑛 에 

𝑓1 , 𝑓2 , 𝑓3 을 할당하는 상태로 정의한다. 또한, 이진 변수 

𝑦1𝑛𝑚, 𝑦2𝑛𝑚, 𝑦3𝑛𝑚 은 각각 CU 𝑚 ∈ ℳ = {1, ⋯ , 𝑀} 이 DU 

𝑛의 𝑓1 , 𝑓2 , 𝑓3을 처리하는 상태를 뜻한다. 그러면 DU 𝑛이 

소모하는 에너지는 다음과 같이 정의된다. 

𝑉𝑛 = 𝜅𝑛𝛼𝑛 ∑ 𝑥𝑓𝑛

3

𝑓=1
+ 𝜅𝑛𝛽𝑛𝜆𝑛 ∑ 𝜌𝑓𝑥𝑓𝑛

3

𝑓=1
, (1) 

여기서 𝜅𝑛  [Joule/cycle]은 단위 CPU cycle 연산에 

필요한 에너지, 𝛼𝑛은 인스턴스 생성 비용, 𝛽𝑛는 traffic에 

선형적으로 비례하는 연산 비용, 𝜌𝑓  [cycles/bit]은 VNF 

𝑓를 처리하는데 필요한 단위 비트 당 CPU cycle 수를 

의미한다. CU 𝑚의 에너지 소모량은 다음과 같다. 

𝑉𝑚 = 𝜅𝑚𝛼𝑚 ∑ ∑ 𝑦𝑓𝑛𝑚

3

𝑓=1
𝑛∈𝒩

+ 𝜅𝑚𝛽𝑚 ∑ 𝜆𝑛 ∑ 𝜌𝑓𝑦𝑓𝑛𝑚

3

𝑓=1
𝑛∈𝒩

, (2) 

한편, DU 𝑛은 할당된 VNF를 처리한 후 남은 traffic을 

CU 𝑚과 연결된 midhaul (𝑛, 𝑚)을 통해 전송한다. DU 

𝑛이 전송해야 하는 traffic은 아래와 같이 표현된다[1]. 

𝑆𝑛 = 𝑥1𝑛(1.02𝜆𝑛 + 1.5) − 𝑥2𝑛(0.02𝜆𝑛 + 1.5) + 2500(1 − 𝑥1𝑛) 

Midhaul (𝑛, 𝑚)의 채널 용량을 𝑐𝑛𝑚  [bps]로 정의하면, 

해당 midhaul 의 지연시간은 𝑇𝑛𝑚 = 𝑆𝑛/𝑐𝑛𝑚로 계산된다. 

vRAN system 의 에너지 소모량과 지연시간을 동시에 

최소화하는 다목적 문제를 다음과 같이 공식화한다. 

min
𝒙,𝒚

   𝑊 ( ∑ 𝑉𝑛

𝑛∈𝒩

+ ∑ 𝑉𝑚

𝑚∈ℳ

) + (1 − 𝑊) ∑ ∑ 𝑇𝑛𝑚

𝑚∈ℳ𝑛∈𝒩

, (3) 

𝑠. 𝑡.     𝑥(𝑓+1)𝑛 ≤ 𝑥𝑓𝑛 , 𝑦𝑓𝑛𝑚 ≤ 𝑦(𝑓+1)𝑛𝑚, 

            𝑥𝑓𝑛 + ∑ 𝑦𝑓𝑛𝑚

𝑚∈ℳ

= 1 



여기서 𝒙 = {𝑥𝑓𝑛: ∀𝑓, 𝑛} , 𝒚 = {𝑦𝑓𝑛𝑚: ∀𝑓, 𝑛, 𝑚} , 𝑊 ∈ [0,1]은 

상수 weight 이다. 위 문제는 mixed integer linear 

programming (MILP)로 상용 소프트웨어를 통해 최적 

솔루션을 도출할 수 있으나, 네트워크 크기에 비례하여 

연산 복잡도가 증가하여 비효율적이다. 

  

Ⅲ. 제안하는 ENGNN 기반 VNF 배치 최적화 방법 

VNF 배치 문제를 효과적으로 계산하기 위해 ENGNN 

모델을 도입한다. vRAN을 DU 노드 𝒩 , CU 노드 ℳ , 

그리고 midhaul 간선 ℰ = {(𝑛, 𝑚): ∀𝑛, 𝑚} 으로 구성된 

이진 그래프로 모형화 한다[4]. DU 𝑛  은 𝜆𝑛 을 입력 

특성으로 사용하여 𝑥𝑓𝑛을 추론한다. Midhaul 간선 (𝑛, 𝑚) 

은 입력 특성 𝑐𝑛𝑚 를 기반으로 𝑦𝑓𝑛𝑚을 결정한다. 

ENGNN의 학습 과정에서 gradient vanishing 문제를 

방지하기 위해 이진 변수 𝑥𝑓𝑛 , 𝑦𝑓𝑛𝑚 를 0과 1 사이의 

실수로 근사하는 relaxation 방법을 사용한다. 또한, 제한 

조건을 만족하기 위해 적절한 activation 함수를 

설계하여 ENGNN이 항상 feasible 솔루션을 도출하도록 

한다. ENGNN은 문제 (3)의 목적함수를 최소화하도록 

훈련한다. 학습 종료 후 다양한 크기의 vRAN에 바로 

확장 적용이 가능하다. 

 

IV. 모의실험 결과 

모의실험을 통해 제안하는 ENGNN 방법의 성능을 

MOSEK solver 로 계산한 최적 솔루션과 비교하여 

유효성을 검증한다. vRAN 시스템을 각 DU 가 단일 CU 

와 연결된 무작위 이진 그래프로 생성한다. Traffic 𝜆𝑛 및 

midhaul 용량 𝑐𝑛𝑚 은 각각 50 − 150 [Mbits] , 50 −

500 [Gbps] 범위에서 균등 분포로 생성한다. ENGNN 은 

𝑁 = 10, 𝑀 = 5 상황에서 학습한다. 

 

 
그림 1. 에너지-지연시간 tradeoff 

 

그림 1은 vRAN의 에너지-지연시간 tradeoff를 

나타낸다. ENGNN은 10개의 DU로 구성된 작은 

시스템에서 학습되었으나, 100개 및 150개의 DU를 갖는 

상황에서도 최적 기법과 유사한 성능을 달성한다. 이를 

통해 제안하는 기법의 확장성을 검증할 수 있다. 

 

 

그림 2. DU 수에 따른 total cost (3) 성능 

 

그림 2는 vRAN의 total cost를 DU 수 𝑁 을 

증가시키며 비교한 결과이다. 다양한 weight 𝑊  에 

대해서 제안하는 ENGNN 기법은 모두 전역 최적 성능에 

가까운 성능을 도출하여 그 유효성을 입증한다.  

 

 
그림 3. CPU 실행 시간 비교 

 

그림 3은 DU 수 𝑁 에 따른 평균 CPU 연산 시간을 

비교한다. ENGNN은 DU 및 CU에 대한 병렬 연산이 

가능하므로 𝑁에 무관한 계산 복잡도를 보인다. 반면에, 

기존 최적화 알고리즘은 𝑁 이 커질수록 연산 시간이 

가파르게 증가한다. 두 방법의 성능이 유사한 것을 

고려하면, 제안하는 기법이 연산 효율적임을 알 수 있다. 

 

V. 결론 

본 논문은 vRAN의 최적 VNF 배치 문제를 

효과적으로 해결하기 위한 ENGNN 기법을 제안한다. 

모의실험 결과 제안하는 기법이 전역 최적 방식의 

성능을 달성하면서도 계산 복잡도를 크게 낮추는 것을 

확인하였다.  
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