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요 약

근사복호기반연합학습은 UDP 기반전송 환경에서오류 복원뿐아니라, 모델 파라미터중주요 정보만을선택적으로전송
및 복호하여 전송 효율을 극대화하는 특징이 있다. 이러한 방식은 전체 파라미터를 전송하는 기존 UDP 기반 FL 대비 전송
데이터 양을 크게 줄이며, 통신 대역폭 및 에너지 사용을 절감한다. 다만, 복호화 연산 복잡도에 따라 학습 지연이 증가할
수 있다. 따라서 본 논문에서는 근사 복호 기반 FL의 전송 효율성과 시스템 오버헤드 간의 균형 관계를 분석한다.

Ⅰ. 서론

연합학습(Federated Learning, FL)은 다수의 단말이 데이터를 분산적

으로 보유한 상태에서 로컬 학습을 수행하고, 그 결과를 서버로 전달하여

전역 모델을 업데이트하는 분산 학습 구조로 주목받고 있다. 그러나 무선

네트워크환경에서 FL은 패킷손실이나비트오류가누적되어 FL 성능이

저하되는 문제가 발생한다. 이러한 문제 상황을 보완하기 위해 최근에는

오류 복원 기능을 포함한 내결함(fault-tolerant) 연합학습 기법이 활발히

연구되고 있으며, 특히 User Datagram Protocol(UDP) 기반 환경에서 동

작하는 FL 시스템의설계 및 최적화에 대한 연구가 집중적으로 이루어지

고 있다 [1]-[3]. 근사 복호 기반 FL(Approximate Decoding–based FL,

AD-FL)은 전송된 모델 파라미터중 주요 정보만을선택적으로복호하여

전달함으로써 전송 효율을 크게 향상시키는 접근법으로 주목받고 있다

[4]-[5]. 이러한 방법은 모든 파라미터를 완전 복원하거나 재전송하지 않

고, 학습에 기여도가 높은 중요 파라미터만을 복호하여 활용함으로써 통

신 부하를 크게 줄인다.

한편, AD-FL은 통신효율 측면에서유리하지만, 선택적 복호화로 인하

여 복호 연산 복잡도 증가라는 잠재적 한계를 내포한다. 즉, 복호화 연산

을 위한 추가 계산이 시스템 지연(latency)을 유발하여 학습 효율을 저하

시킬가능성이 있다. 따라서, 본 연구에서는 AD-FL의 시스템지연 및연

산 오버헤드를 정량적으로 평가하고, 전송 효율성과 계산 복잡도 간의 균

형적관계를분석함으로써근사복호기반효율적 FL 시스템의구현가능

성과 실효성을 검토하고자 한다.

Ⅱ. 근사 복호 기반 연합학습

본 논문에서 고려하는 AD-FL 시스템의 전송 구조와 복호 메커니즘을

중심으로, UDP 기반 환경에서의모델 파라미터전달 효율을 분석한다. 본

연구에서는다수의 로컬디바이스와하나의글로벌 서버로구성된중앙집

중형연합학습구조를고려하며, 전송 방향에따라송신주체가달라질수

있음을 가정한다. 즉, 모델 업데이트가 상향 전송(uplink)될 때는 로컬 디

바이스가 전송 측이 되며, 반대로 전역 모델이 하향 전송(downlink)될 때

는 서버가 전송 측의 역할을 수행한다.

그림 1과 같이 전송 측에서는 로컬 학습을 통해 갱신된 모델 파라미터

 중 중요도가 높은 요소를 선택적으로 추출하고, 이를 벡터 형태로 구

조화하거나 압축하여 전송 패킷을 구성한다. 수신 측은 채널 오류로 패킷

손실이 발생한 경우, 수신된 주요 파라미터를 이용해 근사 복호를 수행하

고누락된값을복원한다. 복호된모델파라미터는이후전역모델집계에

사용되며, 이를 통해 통신 효율과 학습 정확도 간의 균형을 유지한다.

Ⅲ. 실험 결과

본 실험에서는 각 학습 라운드마다 100개의 로컬 디바이스 중 20%의

디바이스가 랜덤하게 참여하는 시스템을 고려한다. 이때, 네트워크는

UDP를 기반으로 동작하며, 따라서 재전송은 발생하지 않는다. 본 실험에

서는 MNIST 데이터셋을 이용하여이미지 분류작업을 수행하며이때 각

데이터셋은 non-IID(Independent and Identically Distribution)에 따라

분포되어있다고 가정한다. 본 실험에서 각 로컬 모델은 두 개의 hidden

layer로 구성된 DNN 구조를 사용하며, 각 layer는 100개의 hidden node

로 구성한다.

본 실험에서는 제안 기법의 성능을 비교하기 위해 1) TCP 기반의 모델

파라미터 전송 방식 [6], 2) 손실된 모델 파라미터를 0으로 대체하는

그림 1. 근사 복호 기반 FL 시스템의 모델 파라미터 전달 및 학습 과정



zero-filling 기법 [7], 3) 모델 파라미터를 양자화 하여 압축한 후 전송하

는 EDEN 기법 [8], 4) 원 데이터 이외에 추가적으로 패킷을 전달하여 신

뢰성을 향상시키는 systematic 네트워크 코딩(SysNC) 기법[9]을 고려한

다. 본 실험에서 평가하는 AD-FL은 중요 모델 파라미터의 추출과 복호

과정에서특이값 분해(Singular Value Decompostion, SVD) 기반의 모델

파라미터 분해 및 저랭크 근사 과정을 적용한다 [5].

각 알고리즘의 전송 효율을 평가하기 위해 UDP 기반 연합학습 환경에

서 네 가지 지연 성분, 즉 uplink 지연, downlink 지연, 코딩 지연, 그리고

전체 지연을 측정하였다. uplink 지연은 로컬 디바이스에서 서버로 모델

파라미터  전체가 전송되는 데 소요되는 시간이며, downlink 지연은 서

버에서 갱신된 전역 파라미터 를 로컬 디바이스로 전달하는 데 걸리는

시간을 의미한다. 코딩 지연은 부호화 과정과 복호화 과정을 포함하며 근

사복호나오류정정연산을수행하는데필요한전체계산시간을나타낸

다. 전체 지연은 세 지연의 합으로 정의한다.

표 1에 제시된 결과에서 확인할 수있듯이, 제안한 AD-FL은 다른기법

에비해 uplink 및 downlink 지연이현저히감소하였다. 이러한지연감소

는 중요 모델 파라미터만을 선택적으로 전송함으로써, 각 통신 라운드에

서 교환되는 데이터 양이 크게 줄어든 결과이다. 반면, 코딩 지연은 파라

미터 인코딩 및재구성 과정에서 수행되는 행렬 분해와저랭크 근사 연산

으로인해계산복잡도가증가함에따라비교적큰 값을보이는것을확인

할 수 있다. 그럼에도 불구하고, 전체 지연(total delay)은 모든 비교 기법

중가장 낮게측정되었으며, 이는 선택적전송으로인한통신 효율 향상이

코딩 오버헤드 증가분을 상쇄함을 의미한다.

Ⅲ. 결론

본 논문에서는 AD-FL 시스템을 대상으로 UDP 기반 전송 환경에서의

모델파라미터 효율화와지연특성을분석하였다. AD-FL은 중요모델파

라미터만을 선택적으로전송함으로써 uplink 및 downlink 지연을크게 감

소시켰으며, 이는 전체 통신 효율을 향상시키는 핵심 요인으로 작용하였

다. 반면, 행렬 분해와 저랭크 근사 과정에서 발생하는 연산 복잡도로 인

해코딩지연이다소증가하는경향을보였으나, 전체 지연을 기준으로할

때 여전히 가장 낮은 값을 나타냈다. 이러한 결과는 AD-FL 기법이 통신

지연과 연산 복잡도 간의 균형을 효과적으로 달성함을 보여주며, 제한된

대역폭이나비신뢰성 전송환경에서도실질적인적용 가능성이있음을시

사한다.
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Uplink 지연

(A)

Downlink 지연

(B)

코딩 지연

(C)

전체 지연

(A+B+C)
TCP 162.00 25.30 2.71 190.01

Zero-filling 44.70 8.37 2.70 61.77
EDEN 71.00 12.70 21.61 105.31
SysNC 46.31 8.09 26.44 74.92
AD-FL 23.19 3.99 27.19 54.37

표 1. 각 알고리즘의 Uplink 지연, Dowinlink, 코딩, 전체

지연(msec) 비교 결과


