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요 약  

 
본 논문은 시작점– 목표점– 장애물이 주어진 격자 환경에서, 조건부 확산모델(diffusion)을 통해 

전역 탐색 히트맵 H_pred 을 생성하고 이를 기반으로 경로를 추출하는 아모타이즈드(amortized) 

경로탐색 프레임워크를 제안한다. 기준 히트맵 H_opt 은 최단경로 전수 기반의 동적계획(DAG)으로 

구성하고, 예측 히트맵과의 분포 차이를 평가한다. 결과적으로 H_pred 는 전통적 A*/Dijkstra 의 

반복 재탐색 없이 저비용 로컬 룰로도 안정적인 추종이 가능하며, 장애물 이동/폐색 시에도 즉시 

우회 경향을 나타낸다. 또한 Δ H=H_pred− H_opt 및 신뢰도 지표를 통해 설명가능성을 제공한다. 

 

 

Ⅰ. 서 론  

로봇/자율주행에서의 전통적 경로탐색(A*, Dijkstra)은 

환경 변화가 발생할 때마다 전역 재탐색이 요구되어 

O(ElogV) 수준의 비용과 싱글 솔루션(불확실성 부재)이

라는 한계를 가진다. D*, LPA* 같은 증분형 변형이 존재

하지만, 빈번한 장애물 변화나 부분 폐색이 누적되는 실

환경에서는 여전히 재계산 오버헤드와 급격한 경로 변동

을 피하기 어렵다. 특히 동적 장애물이나 부분 폐색 상황

에서는 잦은 재계획으로 지연이 누적되며, 경로가 단번에 

급변하는 문제가 발생한다. 

본 논문은 이러한 문제를 완화하기 위해, 경로를 먼저 

분포로 그려놓고(히트맵) 그 분포를 따라가는 역(逆) 파

이프라인을 제안한다. 구체적으로 시작/목표/장애물/좌표 

인코딩을 조건으로 하는 조건부 확산모델이 전 공간의 

선호도 필드 H_pred 를 생성한다. 이후 플래너는 

− log(H_pred)를 비용으로 하여 A* 혹은 간단한 로컬 정

책으로 경로를 추종한다. 

이 접근은 (i) 환경 변화에 대한 재탐색 비용을 대폭 

줄이는 아모타이즈드(Amortized) 플래닝, (ii) 단일 최단

경로가 아닌 다중 경로의 분포와 불확실성을 내재화, (iii) 

분포/신뢰도 지표를 통한 설명가능성(XAI) 제공이라는 장

점을 갖는다. 본 연구는 제안 프레임워크의 설계·학습·평

가 절차를 제시하고, Grid-World 실험에서 정량(예: 

JSD/EMD/Top-K/ECE, 길이비) 및 정성(히트맵·경로 시

각화) 결과로 그 유효성을 보고한다. 

 

Ⅱ. 본론  

본 연구는 경로를 한 번에 확정하지 않고, 전 격자에 

대한 선호도 분포(heatmap)를 먼저 생성한 뒤 이를 비용

으로 변환해 저비용으로 추종하는 아모타이즈드 경로탐

색을 목표로 한다. 파이프라인은 그림 1 과 같이 두 갈래

로 구성된다. Ground-Truth 분기는 시작·목표· 장애물로

부터 최단경로들의 분포를 계산해 학습 타깃 히트맵 

H_opt 을 만든다. Diffusion 분기는 조건(시작 S, 목표 G, 

장애물 O, 좌표 인코딩 X,Y)을 입력으로 조건부 DDPM

을 통해 예측 히트맵 H_pred 을 생성한다. 마지막으로 

H_pred 를 비용으로 바꾸어 A 또는 로컬 정책으로 경로

를 얻는다. 이 순서는 “경로를 먼저 그리지 않고, 분포를 

먼저 그린 후 경로를 따라간다”는 본 연구의 핵심 아이

디어를 반영한다. 

 
그림 1. 제안 파이프라인(Heatmap-Amortized Planning) 

 

먼저 시작점과 목표점으로부터의 최단거리 지도를 

BFS 로 얻으면, 임의의 셀 (i,j)이 최단경로 위에 놓일 필

요충분조건은 ds(i,j)+dg(i,j)=D(=ds(g))이다. 이 제약을 



만족하는 셀들만 모아 최단경로 DAG 를 구성하면, 시작

→셀의 경로 수(Cs)와 셀→목표의 경로 수(Cg)를 동적계

획으로 독립 집계할 수 있다. 

 

H_opt 을 “데이터”로 보고, 노이즈가 섞인 x_t 에서 노

이즈 ε 를 예측해 제거하도록 U-Net 을 학습한다(ε -예

측). 입력 조건 c 는 [S,G,O,X,Y]로 구성된다. S,G 는 원-

핫, O 는 장애물 마스크, X,Y 는 좌표 인코딩으로, 모델이 

“어디가 시작·목표이고 어디가 금지영역인지”와 “격자 위

치”를 즉시 파악하게 돕는다. 

 

추론은 무작위 x_T~N(0,I)에서 시작해 조건을 고정한 

채 역과정을 내려오며 x_0 를 얻는다. 이때 조건/무조건 

예측을 가중합해(가이던스 w) 분포의 집중도를 제어한다. 

최종 x_0 는 softplus 로 비음수화한 뒤 총합 1 로 정규화

해 확률 히트맵 H_pred 로 사상한다. 이렇게 얻은 

H_pred 는 “전역 선호도 필드”로 해석할 수 있어, 이후 

플래닝 단계에서 비용으로 바로 변환된다. 장애물 셀에 

대해서도 H_pred 는 완전 0 이 아니라 미소 질량을 두는

데, 이는 환경이 바뀔 때(장애물 이동/해제) 분포가 급격

히 끊기지 않고 부드럽게 재분배되도록 하는 장점이 있

다. 

 

확률을 곱셈적 선호도로 보면, − log 변환을 통해 가산 

비용으로 만들 수 있고 이는 A 에 즉시 호환된다. 우리는 

cost=− log(H_pred+ε )+M·1[장애물]로 정의하여, 현재 

장애물은 큰 패널티 M 으로 확실히 배제하지만, 분포 자

체는 장애물 주변에 미소 질량을 유지한다. 결과적으로 

동적 장애물이나 부분 폐색이 발생해도 전역 재탐색 없

이(혹은 매우 짧은 국소 재탐색만으로) H_pred 가 가리키

는 “확률 경사”를 따라 신속히 우회할 수 있다(아모타이

즈드 플래닝). 

 

 

그림 2. Ground Truth vs. Diffusion Heatmap 

Ⅲ. 결론  

본 연구는 소형 Grid-World 에서 조건부 DDPM 이 생

성한 H_pred 와 최단경로 전수 기반 H_opt 를 비교한 결

과, TopK@20% 커버리지가 0.84±0.18 로 높아 핵심 경

로 대역을 안정적으로 포착했고, 길이비(len-ratio)는 거

의 1.0 에 수렴하여 A*가 − log(H_pred) 위에서 최단경

로에 근접한 해를 찾음을 확인했다. 

표 1. 제안 방법의 정량 평가 
 

이 분포적 성질은 동적 장애물·부분 폐색 환경에서 특

히 유효했다. H_pred 가 전역 선호도 필드로 기능하기 때

문에, 장애물이 이동하거나 새로 나타나도 전역 재탐색 

없이 분포의 경사를 따라 즉시 우회하는 경향을 보였다. 

이는 전통적 A*/Dijkstra 가 환경 변화마다 O(E log V)의 

비용을 지불하던 한계를 아모타이즈드(planning-by-

distribution) 방식으로 실질적으로 완화한 결과다. 

한편 한계도 분명하다. 첫째, 분해능 부족 문제로 그리

드 크기를 키우면 히트맵이 과도하게 평탄화되어 EMD

가 커지고 모서리에서 오차가 집중된다. 둘째, 데이터 다

양성 문제로 시작/목표 배치와 장애물 패턴의 다양성이 

부족한 경우 장면별 편차(TopK 표준편차↑ )가 커진다. 

이는 대규모·다양한 지도 데이터와 더 깊은 네트워크로 

스케일링할수록 분포 정합과 신뢰도가 함께 개선될 것으

로 보인다. 

종합하면, 제안한 Heatmap-Driven(Amortized) 경로

탐색은 재탐색 비용 절감, 다중 경로·불확실성의 자연스

러운 내재화, XAI 친화적 평가/시각화를 동시에 달성했다. 

본 프레임워크는 2D 격자에서의 유효성이 확인되었고, 

이후 연속 좌표/대형 맵·3D 환경(지형, 시야 차단)·

MPC/RL 과의 하이브리드로 확장될 여지가 크다. 본 접

근은 동적·복잡 환경에서 안정적이고 설명 가능한 경로계

획의 실질적 대안이 될 수 있다.  
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지표(metric) JSD EMD 

(approx) 

TopK@20% 

coverage 

ECE 

(cell) 

값 0.38±0.09 1.82±0.60 0.84±0.18 0.22±0.14 


