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Abstract 
Low probability of intercept (LPI) radar signals employ low power and diverse modulation schemes to evade 

detection, posing major challenges for interception and classification. Conventional CNN-based approaches with 

time– frequency image (TFI) inputs struggle to capture long-range dependencies and often overlook the repetitive 

pulse structure inherent in radar transmissions. This paper presents PulseFormer, a transformer-based framework 

that integrates self-attention with multi-pulse aggregation for robust LPI signal recognition. Each intercepted pulse 

is converted into a TFI and encoded via a shared vision transformer backbone to exploit both intra- and inter-

pulse dependencies. Experiments on twelve LPI modulation types under varying SNR conditions show that 

PulseFormer consistently outperforms CNN and standalone vit baselines, demonstrating superior robustness in 

low-SNR environments. 

Ⅰ. Introduction 

Low Probability of Intercept (LPI) radar systems are 

designed to minimize detectability by electronic 

surveillance sensors while maintaining reliable target 

detection. Unlike conventional radar waveforms, LPI 

signals employ low peak power, wide spectral 

spreading, and agile modulation schemes, making them 

difficult to intercept or classify using traditional 

receivers[1]. As modern electromagnetic 

environments grow increasingly congested, accurate 

recognition of LPI radar modulations has become 

essential for electronic warfare. 

Deep learning has emerged as a powerful tool for 

automatic radar waveform recognition. Conventional 

approaches typically transform intercepted signals 

into two-dimensional time-frequency images (TFIs) 

and employ convolutional neural networks (CNNs) to 

classify modulation types based on learned spectral–

temporal patterns[2]. 

To address these challenges, recent work has 

explored Pulse integration, a classical radar detection 

technique that coherently combines multiple pulses of 

the same modulation to enhance the effective SNR. In 

[3], Hwang et al. extended this concept to CNN-

based LPI classification and demonstrated notable 

gains, yet confusion among structurally similar 

modulations such as P1 and P4 persisted, revealing 

the limitations of purely convolutional representations. 

The Vision Transformer (ViT) [4] adapted from 

natural language processing, provides a promising 

alternative by modeling global dependencies through 

self-attention mechanisms. ViTs partition each TFI 

into patches and compute contextual relationships 

across the entire signal representation, offering 

improved robustness to noise and deformation. 

However, prior ViT-based methods have primarily 

focused on single-pulse analysis, neglecting the 

inherent repetitive nature of radar emissions. 

In this work, we introduce PulseFormer, a 

transformer-based framework that integrates self-

attention with multi-pulse aggregation for robust LPI 

radar signal classification. By encoding individual 

pulse TFIs through a shared ViT backbone and fusing 

their embeddings via a transformer-based integration 

module, PulseFormer captures both intra- and inter-

pulse dependencies. Experimental evaluations on 

twelve representative LPI modulation types under 

varying SNR conditions show that PulseFormer 

consistently surpasses CNN and standalone ViT 

baselines, achieving superior performance particularly 

in low-SNR environments. 

Ⅱ. System Model 

In practical electronic-support environments, LPI 

radar signals are received as multiple low-power 

pulses transmitted in rapid succession. Each 

intercepted pulse is affected by random timing offsets 

and additive noise, making reliable classification 

challenging under non-coherent conditions. To 

address this, the proposed PulseFormer framework 

performs end-to-end processing from signal capture 

to modulation recognition, as illustrated in Fig.1. 

In Phase 1, each intercepted pulse is first converted 

into a two-dimensional TFI using the Choi-Williams 

distribution (CWD). This representation effectively 

highlights spectral– temporal structures while 

suppressing cross– term interference, enabling robust 

visualization of modulation patterns such as LFM, 

Costas, and polyphase (P1– P4, T1– T4) schemes[3]. 

The resulting TFIs are fed into a shared Vision 

Transformer (ViT) backbone through a 

TimeDistributed layer. Unlike CNN, which primarily 

extracts local spatial features, the ViT employs patch 

mailto:haejoonjung%7D@khu.ac.kr


embedding and multi-head self-attention to capture  

long-range spectral dependencies and global 

contextual relationships across each pulse TFI.  

In Phase 2, the extracted feature vectors from 

multiple pulses are aggregated through an average 

pooling-based pulse integration layer [3]. This 

module adaptively weights each pulse embedding 

according to its relevance, enhancing the effective 

SNR at the feature level. The integrated feature 

vector is then passed through a lightweight 

classification head that consists of a linear projection, 

dropout, batch normalization, and softmax layer to 

produce the final class probabilities corresponding to 

twelve LPI modulation types. 

Overall, the proposed system leverages CWD-based 

TFI generation, ViT-driven feature encoding, and 

average pooling-based pulse integration to achieve 

robust and efficient classification of LPI radar 

waveforms in adverse electromagnetic conditions. 

  

IV. Results 

The performance of the proposed framework was 

evaluated and compared with a CNN-based model 

under identical experimental conditions. As illustrated 

in Fig. 2, the ViT backbone demonstrates a 

significantly faster convergence and lower validation 

loss across all training epochs compared to the CNN 

model. The reduced loss and smoother convergence 

trend of the ViT backbone confirm its superior ability 

to capture global dependencies and extract 

discriminative features from TFIs of LPI radar signals. 

Overall, the results validate that the incorporation of 

the ViT into the classification framework enables 

more efficient training dynamics and improved 

generalization compared to conventional CNN-based 

models.  

 

 V. Conclusion 

The proposed framework employing the ViT backbone 

demonstrated enhanced feature representation 

through global attention, making it more adaptable to 

diverse radar environments. The following framework 

can be extended by incorporating adaptive fusion or 

hybrid attention mechanisms to further improve 

performance under dynamic and low-SNR conditions. 

ACKNOWLEDGEMENT 

The work was supported by the MSIT, Korea, in part 

under the National Research Foundation of Korea 

grant (RS-2025-23323081), in part under the ITRC 

support programs (IITP-2025-RS-2021-II212046), 

and in part under the Convergence security core talent 

training business support program (IITP-2023-RS-

2023-00266615) supervised by the IITP. 

REFERENCES 

[1] W. Tao, J. Kaili, L. Jingyi, J. Tingting, and T. Bin, 

“Research on lpi radar signal detection and parameter 

estimation technology,” Journal of Systems Engineering 

and Electronics, vol. 32, no. 3, pp. 566– 572, 2021. 

[2] C. Wang, J. Wang, and X. Zhang, “Automatic radar 

waveform recognition based on time-frequency analysis 

and convolutional neural network,” in 2017 IEEE 

International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), 2017, pp. 2437– 2441. 

[3] J. Hwang, Y. Kim, M. Yang, S. Cho, H. Jung, and D. 

Niyato, “Performance enhancement for cnn-based 

classification of low probability of intercept radar signals 

with pulse integration,” IEEE Transactions on Vehicular 

Technology, pp. 1– 14, 2025. 

[4] J. Kim, S. Cho, S. Hwang, and Y. Choi, “Automatic lpi 

radar waveform recognition using vision transformer,” in 

2023 IEEE International Radar Conference (RADAR), 

2023, pp. 1– 6. 

 

Figure 1. System Model  

Figure 2.  Validation Loss comparison  


