

Dual-User STAR-RIS-Assisted Uplink NOMA: Fairness Optimization

Noureen Khan and Yun Hee Kim

Dept. of Electronics and Information Convergence Engineering, Kyung Hee University

{noureen, yheekim}@khu.ac.kr

Abstract

This paper investigates the use of simultaneously transmitting and reflecting intelligent surface (STAR-RIS) to enhance uplink non-orthogonal multiple access (NOMA) for two users. We propose a joint optimization of power allocation and STAR-RIS beamforming maximizing the rate fairness among users without resorting to alternating optimization.

I. Introduction

The concept of simultaneously transmitting and reflecting intelligent surface (STAR-RIS) have emerged as a key technology for providing 360° coverage through simultaneous transmission and reflection [1]. When combined with non-orthogonal multiple access (NOMA), which improves spectral efficiency and connectivity, this combination shows strong potential for future efficient wireless systems [2]. Previous studies have investigated minimum-rate maximization in RIS-assisted NOMA [3], and our recent work in [4] presented a general multi-user STAR-RIS framework. In this paper we focus on the dual-user case and propose simplified second-order cone program (SOCP) formulation that achieves max-min rate fairness with reduced computational complexity compared to the general multi-user case in [4].

II. System Model and Problem Formulation

We consider an uplink NOMA system enhanced by a STAR-RIS, where a single-antenna base station (BS) communicates with two single-antenna users, through STAR-RIS without direct link between users and BS. The STAR-RIS operates in energy splitting mode, with N elements handling both transmission and reflection. For user $q \in \{t, r\}$ the transmission/reflection coefficients are given as:

$$\boldsymbol{\theta}_q = (\sqrt{\beta_{q,1}} e^{j\phi_{q,1}}, \sqrt{\beta_{q,2}} e^{j\phi_{q,2}}, \dots, \sqrt{\beta_{q,N}} e^{j\phi_{q,N}})^T \quad (1)$$

with t and r denoting transmission and reflection spaces, respectively. The channels between STAR-RIS and BS is denoted by $\mathbf{g} \in \mathbb{C}^{N \times 1}$ and that between STAR-RIS and each user q is denoted by $\mathbf{f}_q \in \mathbb{C}^{N \times 1}$. For the uplink NOMA, the received signal at the BS is expressed as:

$$y = \sqrt{p_t} \mathbf{h}_t^T \boldsymbol{\theta}_t s_t + \sqrt{p_r} \mathbf{h}_r^T \boldsymbol{\theta}_r s_r + n \quad (2)$$

where $\mathbf{h}_q = \mathbf{g} \circ \mathbf{f}_q$, p_q , s_q are the cascaded channel, transmit power and symbol of user q , respectively, with $E[|s_q|^2] = 1$ and $n \sim \mathcal{CN}(0, \sigma^2)$ representing the additive white Gaussian noise at the BS.

We aim to maximize the minimum rate of the two users by jointly optimizing the transmission/reflection coefficients and power allocation as:

$$\max_{\boldsymbol{\theta}, \mathbf{p}, \boldsymbol{\pi}} \min \left(\log_2 \left(1 + \frac{p_t |\mathbf{h}_t^T \boldsymbol{\theta}_t|^2}{\pi_r p_r |\mathbf{h}_t^T \boldsymbol{\theta}_r|^2 + \sigma^2} \right), \log_2 \left(1 + \frac{p_r |\mathbf{h}_r^T \boldsymbol{\theta}_r|^2}{\pi_t p_t |\mathbf{h}_r^T \boldsymbol{\theta}_t|^2 + \sigma^2} \right) \right) \quad (3a)$$

$$\text{s.t. } |\boldsymbol{\theta}_{tn}|^2 + |\boldsymbol{\theta}_{rn}|^2 \leq 1, \quad n \in \mathbb{N}, \quad (3b)$$

$$0 \leq p_q \leq P_q^{\max}, \quad q \in \{t, r\} \quad (3c)$$

$$\boldsymbol{\pi} \in \Pi_q \quad (3d)$$

III. Optimization Approach

For a given successive interference cancellation (SIC) order and optimal phase shift $\phi_{q,n} = -\angle h_{q,n}$ along with transmission/reflection amplitude $\mathbf{B} = [\boldsymbol{\theta}_t, \boldsymbol{\theta}_r]$, and $\zeta_{qn} = \frac{|h_{qn}|}{\sigma}$ with $\boldsymbol{\zeta}_q = [\zeta_{q1}, \zeta_{q2}, \dots, \zeta_{qN}]^T$ and by utilizing the monotonic increasing property of the log function, the problem can be reformulated as:

$$\max_{\mathbf{B}, \mathbf{p}} \min \left(\frac{\sqrt{p_t} \zeta_t^T \boldsymbol{\beta}_t}{\sqrt{p_r} (\zeta_r^T \boldsymbol{\beta}_r)^2 + 1}, \sqrt{p_r} \zeta_r^T \boldsymbol{\beta}_r \right) \quad (4a)$$

$$\text{s.t. } \beta_{tn}^2 + \beta_{rn}^2 \leq 1, \quad \beta_{tn} \geq 0, \quad \beta_{rn} \geq 0, \quad n \in \mathbb{N} \quad (4b)$$

$$0 \leq p_q \leq P_q^{\max}, \quad q \in \{t, r\} \quad (4c)$$

By defining $\mathbf{z}_q = \sqrt{p_q} \boldsymbol{\beta}_q$ with $\mathbf{Z} = [\mathbf{z}_t, \mathbf{z}_r]$ and $\tilde{X}_1 \leq \min(f_t, f_r)$, thus the problem can be cast as SOCP and given as:

$$\max_{\mathbf{B}, \mathbf{Z}, \chi_1} \tilde{\chi}_1 \quad (5)$$

$$\text{s.t. } \tilde{\chi}_1 \|\zeta_r^T \mathbf{z}_r\|_1 \leq \zeta_t^T \mathbf{z}_t, \quad \tilde{\chi}_1 \leq \zeta_r^T \mathbf{z}_r, \\ \mathbf{z}_q \leq \sqrt{P_q^{\max}} \boldsymbol{\beta}_q, \quad q \in \{t, r\} \\ \|\beta_{tn}, \beta_{rn}\|_2 \leq 1, \quad n \in \mathbb{N}$$

The optimal value $\tilde{\chi}_1^*$ is then obtained by solving a sequence of feasibility problems.

III. Results and Discussion

For our simulations, we adopt a setup similar to [4], including the BS and STAR-RIS deployment, user distribution, and propagation model.

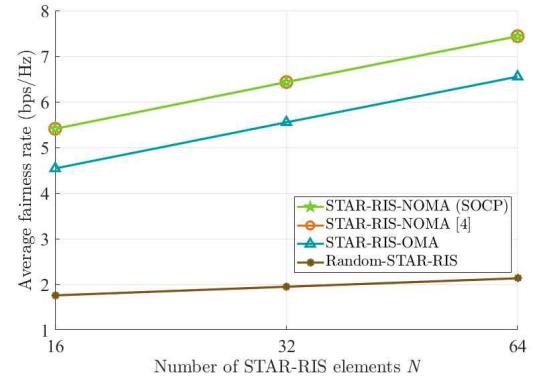


Fig.1. Achievable fairness rate vs number of STAR-RIS elements

We compare our low-complexity SOCP-based STAR-RIS NOMA with the reference STAR-RIS NOMA [4], orthogonal multiple access (OMA), and a random phase - amplitude STAR-RIS baseline. Our method matches [4] at lower complexity, and both NOMA schemes consistently exceed OMA and the random baseline for all N .

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) under Grant RS-2025-16-067576 and by the Institute for Information & Communications Technology Planning & Evaluation (IITP) under the Information Technology Research Center (ITRC) support program (IITP-2025-RS-2021-II212046), funded by the Ministry of Science and ICT (MSIT), Korea.

References

- X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, "Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications," *IEEE Trans. Wireless Commun.*, vol. 21, no. 5, pp. 3083-3098, May 2022.
- G. Yang, et al., "Reconfigurable intelligent surface-assisted non-orthogonal multiple access," *IEEE Trans. Wireless Commun.*, vol. 20, no. 5, pp. 3137-3151, May 2021.
- L. Cantos, M. Awais, and Y. H. Kim, "Max-min rate optimization for uplink RIS-NOMA with receive beamforming," *IEEE Wireless Commun. Lett.*, vol. 11, no. 12, pp. 2512 - 2516, Dec. 2022.
- N. Khan, et al., "Design of STAR-RIS assisted uplink NOMA for maximum fairness," *IEEE Trans. Veh. Technol.*, vol. 74, no. 3, pp. 5223 - 5228, Mar. 2025.