SAMS: SmartNIC-Assisted Disaggregated Memory System

Seunghyeok Choi, Youngbin Im

Ulsan National Institute of Science and Technology

choiish98@unist.ac.kr, ybim@unist.ac.kr

SmartNIC 7|¥F ¥ 2g] &g A|2H

B
of
i

o
[
i

julies
o2
=3

=
Hy
o

Abstract

We propose the SmartNIC-Assisted Disaggregated Memory System (SAMS), a new system that
improves application performance and lowers CPU utilization in Disaggregated memory environments
by leveraging SmartNICs. Our evaluation demonstrates that SAMS reduces execution time by up to 74%
and host CPU utilization by up to 34% compared with Linux, and by up to 23% and 48%, respectively,
compared with Fastswap.

| . Introduction

The rapid growth of datacenter workloads has
intensified pressure on memory capacity. Memory
disaggregation has emerged as a remedy by
pooling the memory resources and letting the
compute nodes access the memory via low-—
latency interconnects such as RDMA. However,
the host-side page—fault path during remote
memory access often becomes a bottleneck that
degrades overall system performance.

[l. Method

To mitigate these bottlenecks, we present SAMS,

a SmartNIC-based Disaggregated memory system.

Figure 1 illustrates the SAMS architecture.

Path Separation. In Linux kernel, when a page
fault occurs, the kernel handles both the faulted
page and any prefetch pages together. SAMS
separates pages by access urgency: pages needed
immediately are served via a synchronous path,
while pages that can tolerate latency are handled

via an asynchronous path. The synchronous path
keeps tail latency low by serving requests on the
host. The asynchronous path uses the sNIC
(SmartNIC): given host-provided metadata, the
sNIC proactively fetches prefetch pages from
remote memory and delivers them to the host.

Kernel SmartNIC Remote
SAMS Kernel Module SAMS Runtime [Remote Memory|
— e | LI o | 1]
Manager Requestor | ’— —1 Worker
Cache Async | Async. L
Swap Out feputc (00 fopeter [‘ Worker

Syne

Swapin Cache Miss

:
tor J
-|_ comrn (] smmcn |-

{

Fig 1. SAMS Architecture.

Efficient Prefetching. The Linux prefetching
retrieves pages sequentially after a faulted page.
Recent work improves on this by analyzing
process—level memory access patterns for
prefetching [1]. We extend this idea to the thread
level, enabling fine-grained and more accurate
prefetching.

Page Manager (PM). Even if a prefetched page
has arrived from the sNIC, it may not be visible to
the kernel until its virtual address mapping is
registered. Upon a page fault, the Page Manager
(PM) checks whether the requested page has
already been prefetched by the sNIC and staged
in host memory. By registering prefetched pages
in Page Cache before application access, SAMS
reduces CPU load.

Effective Page Eviction. When the kernel issues
a swap-out request, the PM first unmaps the
page’s virtual address and caches the page. When
the cache reaches capacity, the host batches
eviction requests and sends them to the sNIC. The
sNIC reads the page data from the cache in the
host and writes it to the designated offset in
remote memory, then signals completion to the
PM. After receiving the signal, the PM reclaims
the cached pages. This pipeline reduces I/O
latency from page replacement and alleviates host
CPU pressure for page management.

300
267270270

250
199
200
150 130
103

100 a8 81 93 7

68 g4 63
) B II II

., AN

Linpack Quicksort

ExecutionTime (s)

Memcached Kmeans Stream

mLlinux mFastswap mOffloader

Fig 2. Execution time comparison.

1600%

1400% 1360%

it 1196%
1200%
1042

1000% 918%

800% 969% 749% 4oq

6148835 626%

600% 507%

400% 3139 313590810%

200% I I I

%

Linpack Quicksort

CPU Utilization

)

Memcached Kmeans Stream

mlinux mFastswap mOffloader

Fig 3. CPU utilization comparison.

Evaluation. We evaluate Linux, Fastswap [2],
and SAMS. Our testbed consists of two servers
equipped with an Intel Xeon Silver 4215R CPU and
128 GB of DDR4 memory and a 200-Gbps
BlueField-2 sNIC. We set one server to use 32 GB
of remote memory on the other server. Workloads
include Linpack, Quicksort, Memcached, K-means,
and STREAM.

With workloads exhibiting largely sequential
access patterns, SAMS improves application
performance while reducing CPU utilization. For
more random-access patterns, SAMS achieves
CPU-utilization reductions comparable to or
better than Fastswap [2], while maintaining
similar performance. For sequential patterns, the
sNIC’s asynchronous path prefetches contiguous
pages with minimal host CPU involvement,
thereby reducing host page—fault frequency and
freeing CPU cycles for application computation.
Batching and cached offloading of page eviction
operations onto the sNIC further improve the
performance.

lll. Conclusion

We presented SAMS, a SmartNIC-assisted
Disaggregated memory system that lowers host
CPU utilization and improves application
performance across diverse workloads.

ACKNOWLEDGMENT

This work was partly supported by the Institute of
Information & Communications Technology Planning &

Evaluation(IITP)-ITRC(Information Technology
Research Center) grant funded by the Korea
government(MSIT)(IITP-2025-11211817, 25%), the

Institute of Information & Communications Technology
Planning & Evaluation(IITP) grant funded by the Korea
government(MSIT) (RS-2025-00349594, 25%), the
Institute of Information & Communications Technology
Planning & Evaluation(ITP) under Next-generation
Cloud-native Cellular Network Leadership Program
grant funded by the Korea government(MSIT) (RS-
2025-00418784, 25%), and the Institute of Information
& Communications Technology Planning &
Evaluation(IITP) grant funded by the Korea
government(MSIT) (RS-2025-00405128).

REFERENCE

[1] Hasan Al Maruf, "Effectively Prefetching Remote
Memory with Leap," Proceedings of the 2020
USENIX Annual Technical Conference, pp. 1-14,
July 15-17, 2020.

[2] Emmanuel Amaro, "Can Far Memory Improve Job
Throughput?", Proceedings of the Fifteenth
European Conference on Computer Systems
(EuroSys '20), pp. 1-16, April 27-30, 2020.

