A Protocol for Autonomous, Device Status-Based
Rollouts in Distributed Systems

Minsoo Kim, Taesoo Jun
Pervasive Intelligent Computing Laboratory, Department of Software Engineering
,Kumoh National Institute of Technology, Gumi, South Korea
{kms991022, taesoo.jun} @kumoh.ac.kr

Abstract—On July 19, 2024, a single flawed CrowdStrike content
patch sent ripples of disruption across the globe, affecting an
estimated 8.5 million Windows devices. Post-incident analyses
underscored the need for phased deployments and rollback trials,
yet they revealed a more fundamental vulnerability: a lack of end-
to-end, protocol-level automated safety nets. This paper introduces
Lightweight Metadata-based Synchronization, a mechanism de-
signed to answer this challenge by embedding coordination policies
directly into update manifests. This approach enables autonomous
staged rollouts, triggers status-based automatic rollbacks, and
deploys compatibility strategies to avert network fragmentation.
The protocol’s peer-to-peer status consensus forges resilience
against partial network disruptions while upholding robust safety
guarantees.

Index Terms—Firmware Updates, Update Safety, Protocol
Coordination, Distributed Systems, SUIT, Backward Compatibility

I. INTRODUCTION

The paralysis of 8.5 million Windows devices on July 19,
2024, began with a single faulty content update [1]. While
CrowdStrike’s subsequent review correctly highlighted the need
for more robust, staggered rollouts [2], the event signaled a
deeper truth: operational processes for safety existed, but they
lacked the teeth of protocol-enforced automatic guardrails.

This event was a symptom of a deeper vulnerability lurking
within any large-scale distributed system, from industrial IoT
and edge computing to CDNs and container platforms. Without
coordination baked into the protocol, version fragmentation can
splinter a network, isolating devices and disrupting services.
While established frameworks like SUIT [3] and TUF/Uptane
[8], [9] secure the delivery pipeline, they delegate the complex
task of coordination to higher-level software.

Contemporary deployment systems reveal critical gaps.
Kubernetes rolling updates offer a lever to pause a troubled
rollout, but yanking it back requires manual intervention
via kubectl rollout undo or an external controller [4].
AWS CodeDeploy can trigger rollbacks from alarms, but this
depends on manually configured CloudWatch metrics and
does not verify compatibility between coexisting versions
[5]. The proposed protocol shifts the burden of safety from
external monitors and human operators to an autonomous policy
embedded within the update’s fabric.

II. PROTOCOL DESIGN

The protocol’s intelligence is not centralized but distributed,
embedded directly into the update metadata of each device
(Fig. 1).

Existing Systems Our Protocol

Update 1 Manifest

F = >

external config

Deploy Canary
Status Check -—— _2_ - -

+ policy

{

Deploy Canary

+ compat

V

P2P Status
+ frag check
Manual Decision dual
or alarm Gate Check /ES
e
¢ (P2P)
Rollback? i{ O
human judgment S~o ‘3

~~<y| Auto Rollback

enforced

Key Differences:
1) Policy embedded & signed in manifest
2) P2P consensus + fragmentation check
3) Automatic protocol-enforced rollback

Fig. 1. Protocol-enforced rollout: existing systems rely on external configura-
tion and manual intervention (left), while our protocol embeds signed policy
in manifests for autonomous coordination (right). Novelty: policy carried in
signed manifest; gates use decentralized P2P consensus with inter-version
probes; compatibility strategy enforced during coexistence.

A. Embedded Policy Mechanism

At its heart lies a compact, CBOR-encoded policy' inside
the update manifest. This is not static data; it is a signed, exe-
cutable set of rules. The policy dictates the entire deployment
choreography: defining stages (e.g., a 1-5% canary cohort),
setting conditions for advancement (e.g., operational metrics
stable above 95% for two hours), and establishing triggers
for an automatic rollback. It also configures the peer-to-peer
reporting mechanism, which relies on cryptographic signatures
to ensure authenticity.

B. A Spectrum of Compatibility Strategies

To keep the network from fracturing into incompatible
cliques during a rollout, the compat_strategy field speci-
fies one of three approaches. The choice hinges on the update’s
nature—a breaking change versus an additive feature—along
with device resource constraints and transition time tolerance.

Version Negotiation: Devices advertise their supported
versions, communicating with the highest one they share. Its

ICBOR (RFC 8949) is a binary data serialization format optimized for
small code and message sizes [6].



minimal overhead (<100 bytes) makes this strategy ideal for
resource-constrained devices. Backward-Compatible Exten-
sions: New capabilities are introduced as optional, version-
tagged extensions, which lets older devices safely ignore what
they do not understand while maintaining core functions. Dual-
Stack: This approach gives the strongest safety guarantee for
breaking changes at the cost of significant memory overhead,
most suitable for major version shifts in well-resourced
gateways.

C. Operational Flow

The deployment process follows a carefully orchestrated
sequence, starting with the broadcast of the signed manifest
containing the embedded policy. Each device then uses this
policy to self-organize and activate the specified compatibility
strategy. Nodes engage in peer-to-peer verification’, cross-
checking stability metrics and ensuring inter-version commu-
nication remains viable. Any detected status degradation or
fragmentation prompts an immediate, autonomous halt and
rollback.

III. SECURITY CONSIDERATIONS

A peer-to-peer status monitoring model inevitably creates
attack vectors. An adversary could inject false reports to stall
a critical update or, conversely, rush a malicious one. The
protocol’s design integrates several mitigation strategies against
these threats. Signed beacons help ensure message authenticity,
while aggregation methods robust against outliers, such as
a trimmed mean or median, prevent malicious nodes from
skewing the consensus.

Gossip-based dissemination provides both efficiency and
redundancy. In cases of conflicting reports, a “freeze-on-
conflict” behavior prioritizes system safety. This decentralized
architecture is inherently resilient, allowing for graceful degra-
dation in edge and IoT settings where a central coordinator
might become unreachable.

IV. IMPACT ANALYSIS

Had this protocol been active during the CrowdStrike
incident, a policy mandating a 1% canary cohort would have
immediately capped the impact to roughly 85,000 devices,
not 8.5 million. The moment operational metrics plunged
or fragmentation signals appeared, an autonomous reversion
would have triggered without human intervention, manual alarm
configuration, or arbitrary timeouts. While the affected canary
group rolled back, the vast majority of devices would have
continued operating normally.

Moreover, the enforced compatibility strategy would have
kept communication channels stable between versions, prevent-
ing network partitioning during the rollback window. Unlike
process-based controls that an operator might circumvent, these
embedded policies are cryptographically signed and verified
by each device.

This mechanism complements existing frameworks. While
SUIT [3] ensures secure firmware delivery and TUF/Uptane [8],

2Gossip-based averaging algorithms are known for their rapid (exponential)
convergence, with the rate depending on the network graph’s spectral properties

[7].

[9] tackle supply chain security, neither dictates the terms of
autonomous, status-based coordination or enforces inter-version
compatibility during staged deployments.

V. CONCLUSION AND FUTURE WORK

The 2024 CrowdStrike event serves as a stark reminder
that staged rollout processes remain fragile without protocol-
enforced guardrails. The Lightweight Metadata-based Synchro-
nization protocol addresses this gap by embedding coordination
policies and compatibility strategies into update manifests,
offering a new paradigm for resilient deployments with
autonomous staging, status-verified progression, and automatic
rollbacks while preventing network fragmentation.

Future work will focus on implementing a prototype on
resource-constrained IoT devices and conducting large-scale
simulations (1,000-10,000 nodes) to validate convergence
properties under network partitions. We plan to measure
protocol overhead, evaluate rollback latency against manual
intervention baselines, and apply the protocol to historical
incident data to quantify its potential for blast radius reduction.

ACKNOWLEDGMENT

This research was supported by the Institute of Information
& Communications Technology Planning & Evaluation (IITP)
grant funded by the Ministry of Science and ICT (MSIT)
through the Innovative Human Resource Development for Lo-
cal Intellectualization program (IITP-2025-RS-2020-11201612;
34%) and the Information Technology Research Center (ITRC)
program (IITP-2025-RS-2024-00438430; 33%); and by the
National Research Foundation of Korea (NRF) grant funded by
the Ministry of Education through the Basic Science Research
Program (2018R1A6A1A03024003; 33%).

REFERENCES

[1] Microsoft, “Helping our customers through the CrowdStrike outage,”
Azure Blog, Jul. 2024.

[2] CrowdStrike, “External Technical Root Cause Analysis - Channel File
291, Aug. 2024.

[3] B. Moran et al., “A Firmware Update Architecture for Internet of Things,”
RFC 9124, Jan. 2022.

[4] Kubernetes, “Kubernetes Deployments: Rolling Update,” Kubernetes
Documentation, 2024. [Accessed: Oct. 2025]

[5] Amazon Web Services, “Redeploy and Roll Back a Deployment with
CodeDeploy,” AWS Documentation, 2024. [Accessed: Oct. 2025]

[6] C. Bormann and P. Hoffman, “Concise Binary Object Representation
(CBOR),” RFC 8949, Dec. 2020.

[7] S. Boyd et al., “Randomized Gossip Algorithms,” IEEE Trans. Informa-
tion Theory, vol. 52, no. 6, pp. 2508-2530, Jun. 2006.

[8] J. Cappos et al., “A look in the mirror: Attacks on package managers,”
Proc. ACM CCS, pp. 565-574, 2008.

[9] Uptane Alliance, “Uptane IEEE-ISTO Standard for Design and Imple-
mentation,” IEEE-ISTO 6100.1.0.0, Jul. 2019.



