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요 약

  5G NR-V2X(New Radio V2X) 통신은 자율주행 및 지능형 교통 시스템 구현의 핵심 기술로, 차량 간 안정적인 정보 교환을 통해 
도로 안전성과 교통 효율성을 향상시킨다. 그러나 차량 밀도 증가에 따라 주기적인 Cooperative Awareness Message(CAM)와 비주기
적인 Decentralized Environmental Notification Message(DENM)의 동시 전송으로 무선 채널이 혼잡해져, 패킷 수신율(Packet 
Reception Ratio, PRR)이 저하되는 문제가 발생한다. 본 논문에서는 이 문제를 개선하기 위해 Deep Q-Network(DQN) 기반의 적응형 
CAM 전송 확률 제어 기법을 제안한다. 제안 기법은 NR-V2X 물리 계층과 채널 혼잡 모델을 반영한 환경에서 학습하며, 채널 혼잡 비율
(Channel Busy Ratio, CBR)과 차량 거리 정보를 입력으로 최적의 CAM 전송 확률을 실시간 결정한다. 시뮬레이션 결과, DQN 정책은 
고정 전송률 방식 대비 전체 차량 구간에서 PRR을 향상시켰으며, 특히 CAM과 DENM 트래픽이 혼잡한 환경에서 통신 안정성이 개선되
었음을 확인하였다. 본 연구는 학습 기반 적응형 혼잡 제어가 NR-V2X의 동적 채널 관리에 효과적임을 보여준다.

Ⅰ. 서 론

  NR-V2X는 지능형 교통 시스템(ITS)과 자율주행 환경을 위한 
핵심 통신 기술이다. 특히 기지국 없이 동작하는 Mode 2는 차량 
간 직접 통신을 지원하며, 이 환경에서 일반 정보 메시지(CAM)와 
긴급 메시지(DENM)는 한정된 무선 자원을 공유한다[1]. 하지만 
차량 밀도가 증가하면 채널 혼잡이 발생하여 메시지 충돌을 유발
하고, 이는 안전과 직결된 패킷 전송 성공률(PRR) 저하로 이어진
다. 기존의 정적(static)이거나 규칙에 기반한 혼잡 제어 방식은 실
시간으로 변하는 교통 상황에 최적으로 대응하기 어려운 문제가 
있다[2].
  본 연구는 이러한 문제를 해결하기 위해 심층 강화학습(DQN)을 
이용한 적응형 혼잡 제어 기법을 제안한다. 제안하는 에이전트는 
채널 혼잡도(CBR)와 차량 간 거리를 주요 상태로 입력받아, CAM
의 전송 빈도를 조절하는 최적의 정책을 학습한다. 이를 통해 긴급 
메시지의 전송 신뢰도는 확보하면서 불필요한 네트워크 부하를 줄
여 채널 효율성을 높이는 것을 목표로 한다. 제안된 기법은 기존의 
고정 전송률 방식과 비교하여 다양한 혼잡 상황에서 PRR을 효과
적으로 개선하였으며, 이를 통해 동적인 V2X 환경에서 통신 안정
성과 신뢰성을 확보할 수 있는 가능성을 확인했다.

Ⅱ. NR-V2X 네트워크 모델

  본 연구에서는 100대의 차량이 통신하는 5G NR-V2X Mode 2 
환경을 모델링하였다[3]. 무선 채널은 차량 간 거리에 따른 거리 
감쇠, 잡음, 송수신 안테나 성능을 고려하여 구성하였으며, 모든 
차량은 주기적으로 정보를 전송하는 CAM 메시지와 긴급 상황을 

알리는 DENM 메시지를 동일한 무선 자원에서 송신한다. 차량 수
가 증가하거나 CAM 전송률이 높아질수록 채널 혼잡률(CBR)이 상
승하고, 이에 따라 무선 자원 충돌과 간섭이 빈번해져 통신 신뢰도
가 저하된다[4]. 통신 성능은 신호대간섭잡음비(SINR)에 기반한 
PRR로 평가되며, 본 모델에서는 CBR이 커질수록 간섭이 증가하
여 SINR이 감소하도록 간섭 페널티를 적용하였다. 또한, 신호 세
기가 충분히 높은 구간에서는 PRR을 1로 고정하여 현실적인 무손
실 전송 상황을 반영하였다.
  본 연구의 핵심 목표는 고밀도 차량 환경에서 CAM 메시지의 지
속적인 전송으로 인해 발생하는 높은 CBR과 그에 따른 통신 성능 
저하 문제를 완화하는 것이다. 특히, 모든 차량이 최대 전송률로 
CAM을 송신하여 상시 혼잡이 발생하는 상황에서도 DENM의 전송 
신뢰성을 유지하기 위해, 차량이 주변 혼잡도에 따라 CAM 전송 
비율을 동적으로 조절하는 적응형 혼잡 제어 기법을 제안한다.

Ⅲ. DQN 기반 분산 혼잡 제어 기법

  본 연구에서 제안하는 분산 혼잡 제어 에이전트는 심층 강화학
습 기반의 Double Deep Q-Network(Double DQN) 구조를 적용
하여 설계하였다. 에이전트의 학습 문제는 순차적 의사결정 문제
의 표준 프레임워크인 마르코프 결정 과정(MDP)으로 정의되며, 
현재의 통신 환경을 나타내는 상태  CBR를 입력으로 사용
한다. 행동 공간은 CAM 전송 확률 {1.0, 0.8, 0.5, 0.2}로 구성되
며, 에이전트는 각 시점에서 상태에 따라 최적의 전송 확률 를 

선택한다.
  보상 함수에 대한 수식 (1)은 DENM의 PRR이 높을수록 높은 보
상(가중치 0.8)을 부여하고, 전송 확률과 CBR의 곱에 비례하는 페



널티(가중치 0.2)를 부과하여 통신 신뢰도와 자원 효율성 간의 균
형을 유지하도록 정의하였다.

  ·PRR  · A ·CBR         (1)

  에이전트는 최적 행동 가치 함수 를 근사하기 위해, 두 
개의 은닉층으로 구성된 심층 신경망 를 활용하였다. 각 

은닉층은 32개의 뉴런과 ReLU 활성화 함수를 사용한다. 학습 과
정에서 목표 값은 다음 식 (2)와 같이 계산된다.

    ′  arg max′ ′    (2)

  여기서 는 할인율이며, Double DQN의 메커니즘은 표준 Q-러
닝에서 발생할 수 있는 가치 과대평가(overestimation) 문제를 완
화함으로써 학습의 안정성을 향상시킨다[4]. 신경망은 예측값과 
목표값 사이의 평균 제곱 오차(MSE)를 최소화하도록 학습되며, 
탐험과 활용의 균형을 유지하기 위해 ε-탐욕 정책을 적용하였다. 
최종적으로 학습된 정책을 갖춘 에이전트는 시뮬레이션 환경에서 
거리와 CBR 상태를 기반으로 최적의 전송 확률을 선택하여, 채널 
혼잡도를 완화하고 패킷 수신 성능을 향상시킨다. 최종적으로 제
안된 DQN 기반 혼잡 제어 방식은 NR-V2X 환경에서 주어진 무선 
자원의 효율적 활용을 통해 전체 네트워크 성능을 개선한다.

Ⅳ. 결과 및 분석

  본 장에서는 학습된 DQN 기반 동적 혼잡 제어 에이전트의 성능
을 평가하고, 결과를 분석한다. 제안한 DQN 에이전트는 학습된 
정책에 따라 거리와 CBR 등 주변 환경 정보를 반영해 CAM 전송 
확률을 동적으로 조절한다. 성능 평가를 위해 다양한 CBR 환경
(0.1 ~ 0.9)에서 DQN 에이전트가 평균적으로 선택하는 CAM 전
송 확률을 계산하고, 이를 바탕으로 형성된 평균 CBR 환경에서 
PRR을 측정하는 방식으로 진행하였다. 고정 전송률(Baseline) 시
나리오는 모든 차량이 CAM을 최대 전송률(전송 확률 1.0)로 송신
한다는 조건으로 설정하여 동일한 조건에서 PRR을 측정하였다. 
사용된 주요 파라미터는 표 1과 같다.

파라미터 값
차량 수(N_UE) 100 대
채널 대역폭 10 MHz

PRB 수 50
CAM 패킷 크기 300 Bytes
DENM 패킷 크기 800 Bytes

DENM 전송 차량 비율 5%
MCS 7(QPSK)

안테나 이득(G_tx, G_rx) 3 dBi, 3 dBi
전송 전력 23 dBm
잡음 지수 9 dB

표 1. 시뮬레이션 파라미터 

  그림 1은 CAM과 DENM이 혼재하는 채널 혼잡 환경에서, 제안
한 DQN 기반 혼잡 제어 기법과 Baseline 기법의 거리별 PRR 성
능을 비교한 결과이다. 단거리 구간(10~100m)에서는 두 방법 모
두 높은 PRR을 기록한다. 중거리 구간(100~250m)에서는 두 기
법 간 성능 차이가 나타난다. Baseline 기법에서는 혼잡으로 인한 
간섭과 신호 감쇠로 PRR이 200m 부근에서 감소하고, DQN 기법
은 전송 확률을 조절함으로써 높은 PRR을 유지한다. 200m 지점

그림 1. 혼잡 환경에서 거리에 따른 PRR 비교

에서 DQN의 PRR은 Baseline 대비 우수한 값을 기록한다. 장거리 
구간(250m 이상)에서도 DQN 기법은 Baseline보다 일관된 PRR
을 보이며 통신 신뢰성과 수신 가능 거리를 확장하는 효과가 확인
된다. DQN 에이전트의 혼잡 제어 정책이 네트워크 혼잡도를 조절
하여 SINR을 보존한 결과로 해석된다.

Ⅴ. 결론

  본 연구는 NR-V2X 환경에서 발생하는 채널 혼잡 문제를 해결
하기 위해 DQN 기반 동적 CAM 전송률 제어 기법을 제안하고, 그 
성능을 시뮬레이션을 통해 검증하였다. 제안된 에이전트는 실시간 
채널 상황(거리, CBR)에 따라 CAM 전송 확률을 조절함으로써, 기
존 고정 방식 대비 모든 거리 구간에서 PRR을 향상시켰다. 실험 
결과, 적응형 분산 제어 정책이 NR-V2X 통신의 신뢰성과 자원 효
율성 모두를 개선할 수 있음을 확인하였다. 향후 연구로는, 실제 
교통 시나리오와 다양한 차량 밀도 환경을 반영하여 모델을 확장
하고, 다중 에이전트 강화학습(MARL)을 도입하여 여러 차량이 동
시에 협력하며 상호작용을 고려한 혼잡 제어 정책을 학습하도록 
할 예정이다.

ACKNOWLEDGMENT

“본 연구는 2025년 과학기술정보통신부 및 정보통신기획평가원의 
SW중심대학사업의 연구결과로 수행되었음”(2022-0-01068) 

참 고 문 헌

[1] M. H. C. Garcia et al., "A Tutorial on 5G NR V2X 
Communications," IEEE Communications Surveys & 
Tutorials, vol. 23, no. 3, pp. 1827-1863, 2021.

[2] J. Yin and S. H. Hwang, “Design of C-V2X CAM/DENM 
Separate Resource Pool,” in Proceedings of the 2022 
IEEE VTS Asia Pacific Wireless Communications 
Symposium (APWCS 2022), Seoul, Korea, Aug. 2022, pp. 
94-98. 

[3] W. Anwar et al., "PHY Abstraction Techniques for V2X 
Enabling Technologies," IEEE Transactions on Vehicular 
Technology, vol. 70, no. 1, pp. 32-44, Jan. 2021.

[4] H. van Hasselt, "Deep Reinforcement Learning with 
Double Q-learning,"Proceedings of the AAAI Conference 
on Artificial Intelligence (AAAI), vol. 30, no. 1, 2016.


