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요 약

본 논문에서는 6G 핵심 기술인 우주–항공–지상 통합 네트워크(SAGIN) 환경에서, 유한한 배터리를 갖는 다중 무인항공기(UAV)를 활용하여 전체
시스템데이터전송 성공률과 UAV 에너지 효율동시최적화를하는 FL-MAPPO 기반 UAV 운용 기법을 제안한다. 제안 기법은 연합 학습(Federated
Learning)과 다중 에이전트 근접 정책 최적화(MAPPO)를 결합하여 UAV 간 협력 정책을 학습하고, 이를 기반으로 UAV는 지역 정보를 활용해 이동
경로와 서비스 노드 수를 동적으로 조정한다. 시뮬레이션 결과, 제안된 기법은 기존 스킴 대비 데이터 전송 성공률을 약 9.4% 향상시키고, 임무 종료
후 UAV 잔여 배터리를 4~6% 수준으로 유지함으로써 에너지 효율과 데이터 전송 성공률의 균형을 효과적으로 달성하였다.

Ⅰ. 서 론

6세대 이동통신(6G)은 지상 네트워크의 한계를 극복하고 유비쿼터스 연

결성 제공을 위해 우주-항공-지상 통합 네트워크(Space-Air-Ground

Integrated Network; SAGIN)를 핵심 구성요소로 고려하고 있다[1].

SAGIN에서 위성은 광역 커버리지를 제공하지만, 넓은 빔 커버리지는 주

파수재사용으로인한심각한사용자간간섭을야기하며, 긴 신호 경로는

불안정한채널 품질의원인이되어다수의 이용자에게안정적인서비스를

제공하기 어렵다. 이를 보완하고자, 최근 무인항공기(UAV)를 이동형 릴

레이로활용하여더작은셀을구성하고협력통신을통해다중접속환경

에서의 통신 성능을 향상시키는 연구가 활발히 진행되고 있다[2]. 그러나,

UAV 운용에는 제한된배터리 용량의 물리적 제약이존재하므로 통신성

능과 에너지 효율의 균형이 중요하다.

본 연구에서는 이러한 문제를 효과적으로 해결하기 위해 연합 학습(FL,

Federated Learning)과 다중 에이전트 심층 강화학습(MADRL,

Multi-Agent Deep Reinforcement Learning)을 결합한 FL-MAPPO 기

반 UAV 운용 기법을 제안한다.

Ⅱ. 시스템 모델

그림 1. 시스템 모델

본 논문에서는 그림 1과 같이 1개의 위성과 개의 UAV가 지상에 각

셀의 가로, 세로 길이가 인 × 개의 인접 셀을 총  시간 동안 서

비스하는환경을 고려한다. 위성과 UAV는 서로다른주파수 대역을사용

함에 따라 상호간 간섭은 존재하지 않음을 가정한다. 이때, 전체 시간 

는 시간 간격 의 시간 슬롯(time slot)으로 분할되며, 각 시간 슬롯은준

정적(Quasi-static) 상태를 가정한다. 각 격자 셀의 중앙에는 지상 노드가

배치되어 있으며, 위성은 전체 지역에 다운링크 서비스를 제공하고, 개

의 UAV는 이를 보조하기 위해 각 담당 서비스 영역을 분할하여 이동형

복호후 전달(DF, Decode-and-Forward) 릴레이 역할을 수행한다.

각 UAV는 자신의 담당 서비스 지역인 ×개의 인접한 셀 내에서,

미리 정의된 유한한 수의 호버링 후보 위치로만 이동할 수 있으며, 특정

위치에 호버링시 최대 ×개의 인접 셀들을 커버함을 가정한다. 여기

서,  ≤을만족한다. 각 지상노드는 개의트래픽요구량

레벨 중 하나에 해당하는 트래픽을 요구하며, 요구량은 시간 슬롯마다 독

립적이고무작위로 변화함을가정한다. 각 시간 슬롯마다 UAV는담당서

비스 지역 내 지상 노드들의 데이터 요구량과 채널 상태 정보를 얻을 수

있으며, 이를 기반으로 호버링 위치와 서비스 노드의 수 ≦ ×을

결정한다. 서비스 노드의 수 이 결정되면, UAV는 ×개의 커버하는

셀 중에서 트래픽 요구량이 높은 순서로 우선적으로 서비스함을 가정한

다. 위성은 모든 지상 노드의 트래픽 요구량과 각 UAV가 서비스하기로

결정한 지상 노드들에 대한 정보를 가지고 있다. 결정된 호버링 위치로

UAV들의 이동이 완료되면 다운링크 통신이 시작되며, 이는 TDD(Time

Division Duplexing) 기반의 2단계 구조로 동작한다.

∙1단계(오프로딩): 주어진 × 시간 동안 위성은 전체 대역폭을 균등

분할하여 개 UAV에 UAV를 통해 지상 노드로 전송할 데이터를 전송

한다. 여기서,   ≤ 의 임의의 상수 비율이다. 각 UAV는 자신이 서

비스하기로 결정한 지상 노드들 중 요구량이 높은 노드의 요청 데이터부

터, 위성으로부터우선 수신후 복호(Decode)하며, 이후병렬 다운링크 단

계에서 이를 재전송한다.

∙2단계(병렬 다운링크): 다음 × 시간 동안 UAV가 커버리지

내 선택된 지상 노드들에 위성으로부터 수신 받은 트래픽을 전송하고, 위

성은 나머지 노드들의요구 트래픽을직접 트래픽을전송한다. 이때, 위성

과 UAV는 각기서비스하는노드수만큼자신의대역폭을직교균등분할

하여 트래픽을 전송한다.



위성-지상노드와 위성-UAV 채널은 쉐도우드 라이시안 페이딩

(Shadowed Rician Fading)[1]으로, UAV-지상 노드 채널은 레일레이 페

이딩(Rayleigh Fading)[2]으로 모델링 된다. 또한, 모든 송수신 링크는 자

유 공간 경로 손실(Free Space Path Loss)을 겪음을 가정한다.

각 UAV는 유한한 초기 베터리 용량 max을 가지며, 매 시간 슬롯마다

호버링(), 이동(), 데이터 송신() 행위에 따라 에너지

를 소모한다. 이때  ≫  이며, 이때 이동 에너지 소모

는 이동하는 거리에 비례하여 증가하고, 데이터 송신 에너지 소모는 서비

스하는 지상 노드 수에 따라 선형적으로 증가한다.

본 논문의 목표는 UAV의 에너지 효율을 향상시키면서, 전체 시스템의

데이터전송 성공률을최대화하는 것이다. 이를 위해, 해당 문제를 다음의

POMDP (Partially Observable Markov Decision Process)로 모델링한다.

⦁관측: 각 UAV는담당구역내 지상 노드의 트래픽요구량, 채널 상태,
정규화된 배터리 잔량을 관측한다.

⦁행동: UAV는 호버링 위치와 커버리지 내 서비스할 지상 노드의 수를
동시에 결정한다.

⦁보상: 보상 함수는 데이터 전송 성공률과 에너지 효율을 동시에 최대
화하도록 다음과 같이 정의한다.

 ×


max

 .
여기서, 는 요구한 데이터를 성공적으로 수신한 지상 노드의

수, 는 소모된 에너지, max는 시간 슬롯 내에 소모 가능한 최

대 에너지, 는 에너지 페널티 가중치이다.

Ⅲ. FL MAPPO을 활용한 UAV 운용 기법

본 연구는 다중 UAV의 협력적정책 학습을 위해 MAPPO(Multi-Agent

Proximal Policy Optimization) 알고리즘을 적용하였다[1]. 각 UAV는 로

컬 관측에 기반해 행동을 결정하고(Decentralized Execution), 학습 단계

에서는 모든 에이전트의 정보를 활용하는 중앙집중형 Critic을 통해 안정

적인 학습을 수행한다(Centralized Training).

그림 2. 제안하는 FL-MAPPO 구조 및 학습 과정

또한, UAV 간 데이터 공유시 발생하는 통신오버헤드와프라이버시문

제를 완화하기 위해 FL을 결합하였다. 그림 2와 같이 각 UAV는 로컬 환

경에서 Actor–Critic 모델을 독립적으로학습하고, 학습된 모델 가중치만

중앙 서버로 전송한다. 서버는 이를 FedAvg 알고리즘[3]으로 병합 및 갱

신한뒤 UAV들에게재배포하며, 반복 과정을 통해글로벌정책으로수렴

한다.

Ⅳ. 성능 검증

제안기법의성능검증을위해, 시간 슬롯간격   , 총 30개의 시간

슬롯 동안 각 셀의 한 변이 100m인 ×개의 인접 셀을 고도 550km 위

성과고도 300m의 개의 UAV가 각기 × 담당구역내 ×의

커버리지를 가지고 서비스하는 시나리오를 고려한다. 시스템 파라미터는

다음과 같다:   , 위성의 송신 전력 300W, 대역폭 300MHz, 전송 주

파수 28GHz, UAV의 각 링크별 전송 전력 1W, 대역폭 300MHz, 전송 주

파수 2GHz. 에너지 페널티가중치   . 지상 노드는 개 레벨

의 트래픽 요구량이 있음을 가정했다(20Mbps, 40Mbps, 60Mbps).

효과적인 성능 분석을 위해 다음과 같은 비교 스킴을 설정하였다.

1) No-UAV: UAV 없이 위성만을 사용하여 통신한 경우

2) Random UAV: UAV가 위치와 서비스 개수를 무작위로 결정

3) Heuristic (Max-Demand): UAV가 항상 트래픽 수요가 가장 높은 곳

으로 이동하여 최대 지상 노드를 서비스

4, 5) Fixed-Relay-1 / 4: 제안 모델의 위치 결정 정책에 따르되, 서비스

노드 개수를 1개 또는 4개로 고정

6) FL-MAPPO: 제안하는 기법

　 No-
UAV

Random 
UAV

Heuristic 
UAV

Fixed-
Relay-1

Fixed-
Relay-4

FL-
MAPPO

평균 
데이터 
전송 

성공률

49.4% 57.7% 55.5% 63.6% 64.0% 70.1%

UAV 당 평균 
서비스 노드 수 2.5 4 1 4 2.3

최종 
베터리 
잔량/ 
방전된 

시간슬롯

UAV_0

0% 16 0% 14

36%

 - 0%

21 4%

 -
UAV_1 36% 21 5%
UAV_2 36% 19 5%
UAV_3 37% 20 6%

표 1. 기법에 따른 성능표

표 1은 제안한 FL-MAPPO 기법과 기존스킴 간의성능 비교결과를나

타낸다. No-UAV 환경은 49.40%로 가장 낮은 데이터 전송 성공률을 보

였으며, 이는 UAV를 이동형릴레이로활용할 경우네트워크전체데이터

전송 성공률이 향상됨을 확인할 수 있다.

Fixed-Relay-4는 64.04%로 비교스킴 중가장 높은데이터전송 성공률

을기록했으나, 과도한 에너지소모로조기방전이발생하였다. 반면, 제안

한 FL-MAPPO는 70.05%로 Fixed-Relay-4 대비 약 9.4% 향상된성공률

을 달성하면서도, 모든 UAV의 잔여 배터리를 4~6% 수준으로 유지하였

다. 이는 제안 기법이 고정된 서비스 노드 수나 트래픽 패턴에 의존하지

않고, 환경 변화에 따라 UAV의 위치와 서비스 노드 수를 동적으로 결정

했기때문이다. 결과적으로, FL-MAPPO는 데이터 전송성공률과 에너지

효율 모두에서 기존 스킴을 상회하며, 지속 가능한 UAV 운용 정책을 효

과적으로 학습했음을 확인할 수 있다.

Ⅴ. 결론

본 논문에서는 FL-MAPPO 기반 다중 UAV 운용 기법을 통해 SAGIN

환경에서데이터 전송성공률과 UAV 에너지 효율을 동시에향상시킬 수

있음을보였다. 제안 기법은학습된협력정책을통해데이터전송성공률

약 9.4% 향상과 지속 가능한 임무 수행 능력을 달성하였으며, 이는 복잡

한 SAGIN 환경에서의 실용적 적용 가능성을 시사한다.
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