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Abstract—Federated learning enables collaborative genomic
analysis while preserving privacy, but malicious participants
can corrupt rare genetic variant signals—the most clinically
valuable yet fragile components of polygenic risk scores. We
present Secure RV-FedPRS, integrating genetic-aware anomaly
detection with blockchain verification. Our system achieves
91.7% attack detection accuracy while preserving over 90%
of rare variant signals. With 30% malicious clients, AUC
degradation is limited to 0.08 versus 0.35 in standard methods,
adding only 36.4ms overhead per round.

Index Terms—Federated Learning Security, Byzantine At-
tacks, Blockchain, Polygenic Risk Score, Rare Variants

I. INTRODUCTION

Federated learning (FL) enables privacy-preserving col-
laborative training on genomic data to construct Polygenic
Risk Scores (PRS). However, FL is vulnerable to Byzantine
attacks, where malicious clients insert corrupted updates [1]].
In genomics, these risks are severe as rare variants (Minor
Allele Frequency < 0.1%) are both clinically important and
statistically fragile. Attackers can suppress or fabricate rare
variant associations, biasing PRS models and exacerbating
health disparities [2], [3].

We consider adversaries controlling up to 30% of clients,
capable of label flipping to nullify rare variant signals;
gradient poisoning to create spurious associations [4]]; sybil
attacks with biologically invalid data (e.g., violating HWE);
and backdoor attacks triggered by specific genetic mark-
ers. Existing Byzantine-robust aggregation methods (e.g.,
Krum [1]], Trimmed Mean, etc.,) ignore biological plausibil-
ity, often suppressing genuine rare variant signals. Even ad-
vanced approaches like FLTrust [5] lack genomic context. FL
for genomics [6] often assumes honest-but-curious clients,
and blockchain-based FL [7] has yet to be integrated with
domain-aware defenses.

To address the lapses in the existing approaches, we
propose secure RV-FedPRS, a framework combining genetic-
aware anomaly detection, hierarchical trust-weighted ag-
gregation, and blockchain auditing. The key contributions
include:

1) Validation of client updates against biological priors
(HWE, allele frequency consistency);

2) Rare variant—preserving aggregation;

3) Blockchain-based trust management and verification.

Our system detects 91.7% of attacks while retaining over
90% of rare variant signals with minimal overhead.
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Fig. 1. System architecture of Secure RV-FedPRS. Client updates undergo
multi-stage genetic-aware anomaly detection before a trust-weighted aggre-
gation. Key decisions and hashes are immutably logged on a blockchain.

II. SECURE RV-FEDPRS FRAMEWORK
A. Hierarchical Model Design

We employ a two-pathway architecture at each client k: a
common variant backbone f. processing baseline PRS, and
a rare variant specialist f, processing allele dosages a; for
P, rare variants:

ij = U(Wout : [fc(PRSj§ Wc) S fr(aj;wr)]) (1)

B. Genetic-Aware Anomaly Detection

Three parallel modules scrutinize updates:



« HWE Testing: Flags clients with systematic genotype
frequency deviations (p < 1079), indicating data fabri-
cation.

o Allele Frequency Consistency (AFC): Compares client
frequencies to reference panels (gnomAD):

w2 | (o)
‘Vk | log < fglobal (U) (2)

o Gradient Plausibility: Isolation Forest detects outlier
gradient patterns indicating poisoning.
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C. Trust-Weighted Aggregation

Dynamic trust scores T,Et)

average:

update via exponential moving

T,&Hl) =o- T,it) +(1-a)- ,(Ct) 3)
where d),(f) combines HWE, AFC, and gradient scores. Two-
stage aggregation: (1) cluster-based trimmed mean for rare
variants, protecting minority populations; (2) trust-weighted
average for global model.

D. Blockchain Verification

PureChain smart contracts [8]], [9] record: (1) update
hashes, (2) trust scores with evidence, (3) aggregation de-
cisions. Verification ensures provenance:

Verify(w®) = A (SHA256(Awk)éh§j>) )
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III. EXPERIMENTAL SETUP EVALUATION & RESULT
CINECA synthetic cohort, K = 10 clients, 10,000 samples

each (European populations). Disease heritability 2 = 0.25
with common variant 0.2 and 50 rare variants 0.05. At-
tacks: 10-30% malicious clients. Baselines: FedAvg, Fed-
Prox, Krum, FLTrust, FLAME.

TABLE 1
PERFORMANCE UNDER 20% MALICIOUS CLIENTS

Method AUCclean AUCpyack RV Signal  Detection Acc.  Overhead
FedAvg 0.681 0.531 38% - 1.0x
Krum 0.698 0.672 51% 68% 3.8%
FLTrust 0.721 0.708 61% 74% 2.7x
FLAME 0.718 0.713 63% 79% 3.1x%
Ours 0.823 0.798 90 % 91.7% 3.4x

As seen in Table. [l FedAvg collapses under attack (AUC
0.531). FLAME retains AUC 0.713 but loses 37% RV signal.
Secure RV-FedPRS achieves AUC 0.798 (+12%), preserves
90% RV signal, and detects 91.7% of attacks with 3.4x
overhead. Trust scores (Fig. isolate aggressive attackers
by round 10.

TABLE II
ATTACK-SPECIFIC RESILIENCE & BLOCKCHAIN OVERHEAD
Attack Baseline  Ours | Blockchain Op.  Time
Label Flip (20%) -0.12 -0.04 | Hash Record 12.4ms
Gradient Poison (20%) -0.18 -0.06 | Trust Update 15.3ms
Sybil (30%) -0.28 -0.08 | Cluster Log 8.7ms
Backdoor (20%) -0.13 -0.03 | Total/Round 36.4ms

Table [lI| shows consistent gains, with strongest protection
for Sybil via HWE/AFC checks. Blockchain adds only
36.4 ms/round (1.54% overhead). With DP (e = 3), MIA ad-
vantage drops to 0.12 while AUC remains 0.809 highlighting
the resilience of the proposed approach.
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Fig. 2. Trust evolution: honest (blue) converge > 0.6; malicious
(red/orange) suppressed.

Generic Byzantine defenses misclassify genomic hetero-
geneity as attacks. Secure RV-FedPRS leverages HWE/AFC
to preserve RV signals crucial for precision medicine. The
integration of security, privacy, and utility shows threat
detection reduces privacy risk.

This paper introduIc\e/d ggcl\{l(r% [f{s\%%dPRS, a blockchain-
verified federated framework enhancing genomic risk pre-
diction under Byzantine threats. By combining genetic-
aware anomaly detection and trust-weighted aggregation, it
achieved 91.7% attack detection, 90% rare variant preser-
vation, and minimal 36.4ms overhead. The system en-
sures transparent, trustworthy genomic learning through
blockchain auditing. Future work will focus on decentralized
deployment, real biobank validation, multi-omics integration,

and quantum-resistant cryptographic protection.
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