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요 약  

 
자율주행차의 상용화에 따라 원격주행을 위한 안정적인 통신 성능 확보가 중요해지고 있다. 이에 

따라 본 논문에서는 차량에서 통신 성능 개선을 위해 gNB기반 5G-NR(Uu통신)과 RSU기반 NR-

V2X(PC5 통신)을 멀티 인터페이스 상황에서 DDQN 알고리즘을 사용해 인터페이스를 선택해 패킷 

수신율을 높이는 기법을 제안한다. 성능 분석 결과 기존 알고리즘에 비해 패킷 수신율 성능 
향상이 있었다. 

 

 

Ⅰ. 서 론  

자율주행차의 지속적인 발전은 운송 산업에 혁신을 

가져오고 있다. 자율주행차의 구분단계인 SAE 4 단계 
이상부터는 fail-operational 라는 운전자의 개입 없이 

모든 고장을 관리할 수 있는 기술이 필요하다. 이러한 

안전 장치 때문에 잠재적인 해결책으로 원격 주행을 

사용하는 것이 대두되고 있다[1]. 원격 주행은 차량에서 
서버의 원격 조작자에게 영상 데이터와, 조작자로부터의 

메시지를 실시간으로 송수신해야 한다. 이 과정에서 

영상의 지연시간과, 품질이 중요하다. 차량에서 

조작자까지 100 ms 지연과 32 Mbps 전송률, 조작자에서 

차량까지 20 ms 지연과 400 kbps 전송률이 필요하다[2].  
이 목표를 달성하기 위한 해결책 중 하나인 5G 는 

실제 주행 환경에서 비트레이트가 감소해[3], 단일 

네트워크만 사용하는 것은 서비스 품질을 충족시키기 

어렵다. 이를 위해 NR-V2X 의 셀룰러(Uu)와 

Sidelink(PC5)를 전환하며 활용하려고 한다. 그림 1 과 
같이 차량은 Roadside Unit(RSU)를 경유한 PC5 경로와, 

gNB 를 경유한 Uu 경로를 동적으로 전환해 서버로 

전송한다. 기존 NR-V2X 관련 연구는 V2V 통신에 

편중되어 있어[7], PC5 기반 RSU 를 활용해 서버와 
통신하는 사례는 상대적으로 부족하다. 

본 논문에서는 5G-NR(Uu)과 NR-V2X(PC5) 간의 

인터페이스 전환을 통해 차량에서의 상향 링크 성능을 

개선시키는 것을 목적으로 한다. 이를 위해 Deep 

Reinforcement Learning(DRL)을 기반으로 하는 
효율적인 인터페이스 스위칭 기법을 제안하며, ns-

3 시뮬레이션에서 DRL 기반 인터페이스 스위칭을 통해 

전송률을 극대화 시키는 것을 목적으로 한다. 

 

Ⅱ. DDQN 기반 인터페이스선택 기법 

최적의 의사결정을 내리기 위해 강화학습을 통해 

차량이 현재 상황에 적합한 인터페이스를 스스로 
선택하도록 하였다. 본 연구의 환경은 신호 세기 및 채널 

상태가 비선형적으로 변화하기 때문에, 단일 Q-network 

기반의 DQN 은 과대추정 문제로 안정적 수렴이 어렵다. 

이에 따라, 본 연구에서는 행동 선택과 가치 평가를 

분리하여 학습 안정성을 확보하는 Double DQN(DDQN) 
구조를 채택하였다. 

탐색을 위해 ϵ − 𝑔𝑟𝑒𝑒𝑑𝑦를 활용했고, 차량 통신 환경의 

시계열적 특성을 반영하기 위해 최근 관측 값들을 

결합하는 프레임 스태킹 기법을 사용했다. 강화학습의 
설계는 다음과 같다.  

⊙ Agent: 에이전트는 Uu 와 PC5 인터페이스를 모두 

탑재한 차량으로 정의된다.  

그림 1. 시뮬레이션 모식도 



 

⊙ Action: 각 의사결정 시점에서 에이전트는 행동 

집합 𝑎! ∈ 𝑈𝑢, 𝑃𝐶5  내에서 하나의 통신 인터페이스를 
선택한다. 

⊙ State: 상태는 위와 같이 정의된다. 여기서 

Reference Signal Received Power(RSRP)는 각각 

gNb 와 RSU 에서 측정된 기준 신호 수신 전력을 
의미한다. Velocity 는 차량의 속도를 m/s 단위로 

나타낸다. Packet Reception Ratio(PRR)은 전 상태와 현 

상태 사이의 패킷 수신율을 나타낸다. 

𝑆! =	 3𝑅𝑆𝑅𝑃{#$}, 𝑅𝑆𝑅𝑃{&'(}, 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!, 𝑃𝑅𝑅!; 

PRR =
서버가 받은 패킷 수

클라이언트가 보낸 패킷 수
			 

그리고 서버가 받은 패킷 수를 Uu 통신을 이용해 

클라이언트로 보내 클라이언트에서 PRR 을 계산한다. 
서버로부터 이 패킷을 받으면, 클라이언트는 행동을 

선택하며 다음 상태가 진행된다. 

⊙ Reward: 보상 함수는 PRR 을 극대화 하려는 

목적으로 설계했다. PRR 값을 제곱 하여 보상을 

극대화하고, PRR 의 𝜏) 을 사용해 임계값 이하로 성능 
저하 시 제한조건을 위반한 것으로 간주해 패널티를 

부과했다. 𝜏) 은 0.95 로 설정해 95%이상의 패킷 

수신율이 나오도록 유도했다. 
𝑟! = 𝛼 ∗ 𝑃𝑅𝑅! ∗ 𝑃𝑅𝑅! − 𝛽 ∗ 𝑚𝑎𝑥(0, 𝜏) − 𝑃𝑅𝑅!) 

Ⅲ. Ns3 기반 시뮬레이션 성능 검증 

실험에서는 ns-3 시뮬레이터에 5G-LENA 의 

V2X 확장기능이 포함된 모듈과 강화학습을 위해 ns3-

gym 모듈을 활용했다. 온라인 강화학습을 통해 파이썬 

에이전트와 ns3 환경이 실시간 상호작용해 현재 상태 
변화에 따른 행동을 동적으로 반영한다. 시뮬레이션에 

활용한 매개변수는 선행연구를[4,5] 참조했다. 

차량의 움직임은 그림 2 와 같다[6]. 차량은 정지해 

있다가 약 50km/h 까지 속도를 높여 55 초간 움직이고, 

차량에서 보내는 패킷은 5GAA 에서 제시한 단일 
카메라의 전송률인 8Mbps 로 전송하고 서버까지 

도착하는 PRR 을 측정해 평가지표로 활용했다. 

시뮬레이션에서는 자원 할당의 제약과 무선 채널 특성의 

패킷 손실로 인하여 100%에 근접한 PRR 달성에는 
제한된다. 

실험 결과는 그림 3 과 같다. Event A3 는 RSRP 를 통해,  

기지국 간의 핸드오버를 위해 사용되는 알고리즘이지만, 

V2X 환경에서의 전송 품질 비교를 위해 사용하였다. 

기존의 전환 방식인 Event A3 사용할 때 보다 약 2.4% 
PRR 이 증가하였고, 멀티 인터페이스에서 DRL-based 

hybrid 기법보다 약 1.8% 향상되었다[7]. 이러한 차이는 

멀티 인터페이스 상황에서는 기존의 핸드오버 알고리즘 

대신, 새로운 기준을 적용한 전환 방식이 보다 
효율적이고 안정적인 것을 확인할 수 있다. 

 IV. 결론 

본 논문에서는 차량 멀티 인터페이스(Uu, PC5) 

상향링크 환경에서 패킷 수신율을 극대화하는 DDQN 

기반 인터페이스 선택 기법을 제안했다. 실험 결과 기존 
기법 대비 패킷 수신율을 높여, 신뢰성을 향상 시켰다. 

또한 PC5 통신과 RSU 를 활용하여 인터넷을 통한 서버 

연결에서 RSU 의 다양한 활용 가능성을 고려해볼 수 

있었다. 

본 연구에서는 자원 할당과 영상 프레임 특성은 

고려하지 않았다. 향후 연구에서는 영상 데이터의 특성을 

반영하고, 다중 경로 전송과 QUIC 프로토콜을 적용하여 

보다 효율적인 알고리즘을 개발할 예정이다. 
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그림 2. 독일 하노버 SUMO 데이터 

그림 3. 알고리즘에 따른 패킷 수신율 


