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요 약

본 논문에서는 Open Radio Access Network (O-RAN) 환경에서의 효율적인 네트워크 슬라이스 분류를 위해, Colosseum 기반 Key Performance
Indicator (KPI) 데이터의 구조를 분석하였다. 상호정보량과 generalized Dunn’s Index를 활용하여 KPI 간 종속성과 클래스 간 분리도를 정량적으로
측정하였다. 데이터 분석 결과, KPI 데이터는 소수의 주요 특징이 네트워크 슬라이스 분류 성능을 결정하는 단순한 구조를 가지며, 이러한 희소성은
고차원 표현 학습 없이도 정확한 슬라이스 구분이 가능함을 확인하였다. 분석 결과를 고려하여 네트워크 슬라이스 분류가 수행되는 O-RAN의 RAN
Intelligent Controller 구조를 설계한다면, 효율적인 분류기 업데이트와 인터페이스 간 교환되는 정보량의 최소화를 통해 전체 RAN 시스템의 운영
효율을 향상시킬 수 있을 것으로 기대된다.

Ⅰ. 서론

무선접속네트워크(Radio Access Network, RAN)는기지국과사용자단

말(user equipments, UEs) 간의무선통신을담당하며, 트래픽부하, 사용자

이동성, 채널품질, 서비스품질요구사항등이시시각각변화하는동적환경

을갖는다. 이러한환경에서최적의네트워크성능을유지하기위해서는, 실

시간으로 변하는 네트워크 상태를 감지하고 이에 따라 자원을 효율적으로

제어하는데이터기반의지능형의사결정이필수적이다. 이러한요구를충족

하기위해제안된Open Radio Access Network (O-RAN)은표준화된개방

형인터페이스를통해, 인공지능및머신러닝(AI/ML) 기술을실제네트워크

운영에통합할수있는유연한아키텍처를제공한다[1]. O-RAN은전통적인

단일 폐루프 RAN 제어 구조와 달리, AI/ML을 지원하는 비실시간

(non-real-time, non-RT) RIC과 근실시간(near-real- time, near-RT) RIC

으로구성된분산형지능제어구조를채택하고있다. 이러한분산형구조에

서는 모델의 주기적인 학습 및 업데이트 주기의 효율성에 따라 전체 RAN

시스템성능이크게좌우된다. 특히, 데이터의양이방대해지고모델의복잡

도와학습비용이증가할경우, RIC 전체의응답성과효율이저하되는문제

가발생한다. 따라서, 짧은학습시간과낮은복잡도를갖는경량기법이실

시간 RAN 제어에서 중요해지고 있다.

O-RAN의 핵심 기능 중 하나인 네트워크 슬라이싱(network slicing) 은

물리적인프라를논리적슬라이스로분리하여, 서로다른서비스요구사항을

동시에충족시킨다. 이때, 각트래픽흐름을올바른슬라이스로분류하는슬

라이스분류(slice classification) 과정은RIC내자원스케줄링, 서비스수준

협약(SLA) 관리, 정책실행의출발점이된다[2]. 빈번한모델업데이트가요

구되는RIC 환경에서는효율적인운영을위해서는, 데이터의복잡도와모델

의표현능력(capacity)을고려하여AI 모델을선택하는것이중요하기때문

에, 데이터의 특성과 구조를 파악할 수 있는 분석 연구가 선행되어야 한다.

본 연구에서는 O-RAN의 Key Performance Indicator (KPI) 데이터를대

상으로 분석을 수행한다. 상호정보량(mutual information)과 general- ized

Dunn’s Index를 이용해 KPI 데이터의 구조적 단순성과 희소성(sparsity)을

검증함으로써, 효율적인 네트워크 슬라이스 분류가 가능함을 확인하였다.

그림 1. O-RAN 아키텍쳐에서의 KPI 데이터 수집·전송·분석 과정

Ⅱ. 본론

A. O-RAN에서의 KPI 데이터 흐름 및 RIC 구조

그림 1은 O-RAN 아키텍쳐 내에서 KPI 데이터 수집·전송되어 RIC의

두 계층으로 분산되는 과정을 나타낸다. UE는 eMBB (enhanced mobile

broadband), URLLC (ultra-reliableand low-latency communications),

mMTC (massive machine type communications)와 같은 서비스 유형에

따라 트래픽을 발생시키며, 이 트래픽은 무선부(Radio Unit, RU)를 거쳐

분배부와(Distributed Unit, DU)와 중앙부(Central Unit, CU)로 전달된다.

RU에서는 물리계층 및 MAC 계층에서 발생하는 다양한 KPI를 주기적으

로 측정한다. KPI 특성은  시점 동안 수집된 개의 벡터  ∈ℝ    형태로, 한 시점마다 수집되는 서비스 유형 벡터는

∈ℝ 형태이다. non-RT RIC에서는 장기간의 KPI 데이터를 기반으로
데이터분석과슬라이스분류기학습을수행하고, near-RT RIC에서는전

달받은분류기 모델을이용해 실시간분류와 자원 제어를수행한다. 이때,

DU에서 RIC으로 데이터 전달 시에 데이터 전송 오버헤드가, non-RT

RIC에서 near-RT RIC으로 배포 시에 모델 배포 오버헤드가 발생한다.

따라서, KPI 특성 분석결과를 기반으로 핵심 KPI만을 선별할수 있다면,

데이터전송량을줄이고 차원이축소된데이터로모델을 학습함으로써모

델 업데이트 부담을 최소화할 수 있다.

본 연구에서는 두가지KPI 데이터셋인COMMAG[4]와 ColO-RAN[5]을



그림 2. KPI 특성별 상호정보량 값()
고려한다. 슬라이스유형은 eMBB, URLLC, mMTC이며, 총 21개  
의 KPI로 이루어진다.

B. 상호정보량 기반 KPI 특성 중요도 분석

상호정보량[6]은두확률변수 간의 종속성을나타내는지표로, 두확률변

수가공유하고있는정보량을수치화한값이다. 따라서, ··가두변수간
결합 확률 질량 함수, ·가 주변 확률 질량 함수일 때, 번째 특성 가
슬라이스 유형 에 대해 제공하는 정보량 은 다음과 같다.

 ∈ ∈ 
   log      (1)

그림 2는데이터셋에따른 KPI 특성별 를시각화한 것으로, 대부분의
KPI는 가 0.08 이하로낮았다. 특히, 두데이터셋이 서로 다른환경에서
수집되었음에도 불구하고, 단 7개의 KPI만이 0.40 이상의 높은 정보량을

제공하고 있는 것을 확인할 수 있다. 즉, KPI 데이터의 구조가 희소

(sparse)하며, 슬라이스 구분에 기여하는 정보는 소수의 특성에만 집중되

어있다는것을의미한다. 이는 복잡한고차원표현학습없이도슬라이스

간분리를달성할수있음을내포한다. 또한, 7개의핵심특성은주로하향

링크(downlink) 자원 및 전송률 관련 지표로, 슬라이스 유형 구분이 주로

하향전송자원사용패턴에서비롯되었음을알수있다. 이는 네트워크의

비대칭적 트래픽 구조인 하향 전송 편향(donwlink-heavy) 성격이 KPI

중요도에반영된것으로해석할수있다. 구체적으로, 고해상도영상, 스트

리밍의 eMBB, 낮은 지연과 높은 신뢰도를 위한 하향링크 중심 스케줄링

의 URLLC 등 실제 5G/6G 슬라이스 서비스의 특성과도 일치한다.

C. generalized Dunn’s Index 기반 슬라이스 유형 분리도 분석

상호정보량분석을통해슬라이스유형클래스와강한종속성을보이는

핵심 KPI가 실제로 유형 간 분리도를 향상시키는지 검증하기 위해

generalized Dunn’s Index[7] 를 다음과 같이 계산한다.
max ≤ ≤∆
min≤   ≤  (2)

은 유형 간 거리 ··에 대한 유형 내 응집도 ∆·의 비율로 정의되
며, 값이 높을수록 유형 간 분리도가 높음을 의미한다. 은 슬라이스 유
형의 개수이고, ··은 각 유형의 중심 벡터 간의 마할라노비스 거리로,∆·은 유형 내 샘플과 중심 간의 평균 거리를 이용해 산출된다.
표 1은 를 내림차순으로 정렬한 후 특성을 하나씩 추가하며 특성 개
수에 따른 을 나타낸 것이다. COMMAG과 ColO-RAN 두 데이터셋 모
두에서,   개의 KPI만 사용했을 때의 이전체 21개 KPI를 사용했을
때보다 향상되었다. 구체적으로, COMMAG에서는 약 17.06%, ColO-

RAN에서는 53.39%로 분리도가 상승하였다. 그러나 이 증가함에 따라,
정보량이 적은 KPI가 포함되면 분리도가 점차 감소하는 경향을 보였다.

COMMAG에서는   , ColO-RAN에서는   일 때 이 최대값을
기록하였는데, 이는 슬라이스 유형 간 경계를 결정하는 데 필요한 정보가

매우 소수의 KPI에집중되어 있음을 의미한다. 즉, 슬라이스 분류를 위한

generalized Dunn’s Index ()
COMMAG ColO-RAN

Number of

KPI features

()
   0.0834 0.1906   0.0977 0.2924   0.1474 0.4556   0.1578 0.0831   0.0569 0.0780

표 1. KPI 특성 개수()에 따른 generalized Dunn’s Index 값()
KPI 공간은 본질적으로 저차원적이고 희소하며, 추가적인 고차원 특징은

오히려 특성 공간의 잡음을 증가시켜 분리도를 약화시킨다. 결과적으로

generalized Dunn’s Index 분석 결과 역시 KPI 데이터가 고차원적 표현

학습을 필요로 하지 않는다는 점을 실증적으로 보여준다.

Ⅳ. 결론

본 논문에서는 O-RAN에서 네트워크 슬라이스 분류를 효율적으로 하

기 위해 KPI 데이터의 구조적 특성을 상호정보량과 generalized Dunn’s

Index를 활용하여 분석하였다. 상호정보량을 통해 슬라이스 유형과 공유

하고 있는 정보량을 정량적으로 파악하고, generalized Dunn’s Index를

통해 슬라이스 유형 간 분리도를 평가함으로써 소수의 핵심 KPI 특성만

으로도높은구분성능을확보할수있음을확인하였다. 이러한결과는데

이터 차원 축소, 데이터 전송량 절감, 경량 모델 설계로 직접 확장될 수

있으며, O-RAN의 RIC 구조에서 효율적이고 실용적인 슬라이스 분류 시

스템을 구현하기 위한 기초적인 근거로 활용될 수 있을 것으로 기대된다.
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