
Mininet을 활용한 Initial Window 크기 변화에 따른
TCP 혼잡제어 성능 평가

서유나, 이재용*, 김병철

충남대학교 전파정보통신공학과

sun02847@o.cnu.ac.kr, *jyl@cnu.ac.kr, byckim@cnu.ac.kr

Performance Evaluation of TCP Congestion Control
with Varying Initial Window Sizes Using Mininet

Seo Yu Na, Lee Jae Yong*, Kim Byung Chul

Department of Radio and Information Comm. Eng. Chungnam National Univ.

요 약

본 논문은 다양한 Initial Window 크기에서 TCP 혼잡제어 알고리즘에 따른 성능 분석을 위해, 먼저 짧은 파일 전송에서 핵심 지표인 흐름
완료 시간(FCT)을 평가했다. CUBIC은 IW가 클수록 FCT는 감소하고, RTT가 클수록 FCT는 증가했다. pacing을 적용한 CUBIC은 초기 버스
트와큐잉지연을완화해특히높은 RTT에서 FCT의 개선폭이컸다. BBR은 IW와 RTT 변화에덜민감하면서, 낮고 안정적인 FCT를 보였다.
대용량 전송에서는처리량이 안정화되는시점(수렴시간)과 처리량변화를관찰했다. CUBIC은 초기손실로인한처리량의진동이컸으며, 일부
높은 RTT와 큰 IW 조합에서수렴 시간이오히려증가했다. pacing을 적용한 CUBIC은 비교적 빠르게수렴했으나, 높은 RTT와 큰대역폭에서
는 초기 pacing으로 처리량의 최대치 도달이 지연되었다. 한편, BBR은 IW 변화에 대한 민감도가 낮고 목표 처리량에 안정적으로 수렴했다.

Ⅰ. 서론

전송계층의대표프로토콜인 TCP는 신뢰적인 데이터전송과혼잡제

어로네트워크 안정성을 보장한다. 초기 혼잡 윈도우(Initial Window)는

TCP 3-way handshake 직후 ACK 없이 전송 가능한 데이터의 최대 크

기(MSS×세그먼트 수)로, 짧은 흐름의 지연에 직접적인 영향을 준다[1].

흐름 완료 시간(Flow Completion Time[2])은 전송 시작부터 마지막

패킷 수신까지의시간으로, 짧은 파일전송성능의핵심지표이다. IW가

클수록 FCT는 감소하지만, IW가 지나치게 크면 손실과 재전송으로

FCT가 증가할 수 있다[3]. 대용량 전송에서는 혼잡제어 알고리즘에 따

라 처리량(throughput) 안정화 시점이 달라져, 수렴 시간(convergence

time)이 핵심 지표가 된다.

본 논문은Mininet[4] 환경에서 IW 크기에따른 TCP 전송 성능을 평

가한다. 짧은 파일 전송에서는 FCT를, 대용량 전송에서는 수렴 시간을

측정하고, RTT·대역폭·혼잡제어 알고리즘(CUBIC[5], paced CUBIC,

BBR[6])별 성능을 비교하여 최적 파라미터 설정의 근거를 제시한다.

Ⅱ. Initial Window와 TCP 혼잡제어 알고리즘 연구 동향

최근 연구에서는 IETF가 권고한 IW10과 달리, 일부 CDN 사업자는

콘텐츠 특성 및 네트워크 상황에 맞춰 IW를 조정하며, IW10보다 큰

IW50, 드물게는 IW100까지도 사용하는 사례가 보고되었다[1].

큰 IW의효과는 네트워크 조건에 따라달라진다. 대역폭과 큐가충분

한환경에서는 FCT가 감소하지만, 저대역폭이나작은큐환경에서는초

기 버스트(burst)로 FCT가 증가할 수 있다. 이를 완화하기 위해 pacing

을 적용해초기데이터를 RTT 구간에 분산전송한다. CUBIC은 손실을

혼잡신호로인식해혼잡윈도우(cwnd)를 증가시키는손실기반혼잡제

어 알고리즘이다[5]. 반면 BBR은 대역폭(BtlBw)과 왕복 지연(RTprop)

을추정해 BDP에 맞춰 cwnd와 pacing rate을 조정하는모델기반혼잡

제어 알고리즘이다[6]. 이로 인해 BBR은 IW 크기 변화에 덜 민감하고

작은 IW 환경에서도성능 저하가 적어 유리하지만, 높은 RTT와 큰 IW

조합에서는 paced CUBIC이 더 낮은 FCT를 보인다[3]. 종합하면, 고정

된단일권장값보다는상황에 따라 조정 가능한 IW 정책이필요하다[1].

Ⅲ. 실험 환경 구축 및 파라미터 설정

본 논문은 Ubuntu 20.04 LTS에서 Mininet[4]과 GUI 도구 Miniedit을

활용해, <그림 1>과같이클라이언트(h1) - 스위치(s1) - 서버(h2)로 이

루어진 단일 토폴로지를 구성했다. 링크 지연과 대역폭은 tc(netem/tbf)

로 설정하고, 트래픽생성과측정은 iperf3로 수행했다. 각조건을 5회반

복측정후 iperf3 로그에서추출한 FCT와 처리량의평균값을사용했다.

실험은 두 가지 시나리오로 구성하였다. 첫째, 100KB의 짧은 파일 전

송 시 IW(1, 2, 4, 10, 20, 50), RTT(30/100ms), 대역폭(10/30/100Mbps)

을 변화시키며 FCT를 측정했다. 둘째, 파일 크기 제한 없이 100초 동안

전송수행 시 IW(1, 4, 10, 50), RTT(30/100ms), 대역폭(10/100Mbps)을

변화시키며처리량이안정화되는수렴시간을측정했다. 두시나리오모

두 혼잡제어 알고리즘은 CUBIC, paced CUBIC, BBR을 대상으로 했다.

<그림 1> Mininet 환경에서의 단일 링크 실험망 구성



Ⅳ. IW 크기에 따른 TCP 혼잡제어 알고리즘별 성능 평가

본 실험에서는 짧은 파일 전송 성능을 분석하기 위해 FCT를 관찰했

다. <그림 2> (a)는 CUBIC과 paced CUBIC의 FCT를 비교한결과이다.

첫째, IW가 커질수록 FCT가 감소했으나, IW가 임계치를 넘으면

FCT가 오히려 증가했다. 예를 들어 CUBIC은 대역폭 10Mbps에서

IW=50인 경우, IW=20보다 FCT가 증가했다. 둘째, RTT가 클수록지연

누적으로 FCT가 증가하였다. 셋째, 100KB 전송은 병목이 거의없어, 대

역폭을 늘려도 FCT 개선이 미미했다. 넷째, CUBIC에 pacing을 적용하

면초기버스트가완화되어, RTT가 큰환경에서 FCT가 크게감소했다.

다음으로 <그림 2> (b)는 CUBIC과 BBR의 FCT를 비교한 결과이다.

첫째, CUBIC은 IW 증가에따라 FCT가 감소한반면, BBR은 BDP 기

반 제어로 IW 변화에 거의 영향을 받지 않았다. 둘째, 전반적으로 BBR

은 CUBIC보다 낮은 FCT를 보였으며, IW가 작은 경우 두 알고리즘 간

성능차이가커졌다. 셋째, BBR은 RTT 증가에따른영향도상대적으로

작았다. 또한 IW=20, RTT=100ms인 환경에서 paced CUBIC은 FCT가

약 0.1초, BBR은 약 0.2초로, 이와같이높은 RTT와 큰 IW를가진환경

에서는 paced CUBIC이 BBR보다 더 낮은 FCT를 보임을 알 수 있다.

<그림 2>평균 FCT: (a) CUBIC vs paced CUBIC (b) CUBIC vs BBR

다음 실험에서는 iperf3로 100초 동안 전송하며 혼잡제어 알고리즘의

long-term throughput을 평가했다. CUBIC, paced CUBIC, BBR을 대상

으로 처리량이 안정 상태에 도달하기까지 걸린 수렴 시간을 비교했다.

<그림 3> (a)는 CUBIC의결과이다. CUBIC은 초기에 처리량 급상승

후 손실과 재전송이반복되어 전반적으로 처리량의 진동이크게 나타났

다. IW나 대역폭이 증가할수록 수렴 시간은 감소했지만, RTT가 증가할

수록 ACK 지연으로 수렴 시간이 증가했다. 다만 IW=50, RTT=100ms,

대역폭 10Mbps 환경과같이고지연과저대역폭조건에서큰 IW로인한

초기 버스트로 손실이 커져, 오히려 IW=10보다 수렴 시간이 증가했다.

<그림 3> (b)는 paced CUBIC의 결과이다. CUBIC에 pacing을 적용

하면초기버스트가억제되어손실이줄고전반적으로더빠르게수렴했

다. 다만 RTT=100ms에서는 대역폭이 커질수록 pacing으로 전송이 분

산되어 큰 대역폭을 즉시 활용하지 못해 수렴 시간이 오히려 증가했다.

<그림 3> (c)는 BBR의 결과이다. 초기 버스트(StartUp) 이후 처리량

은 병목 대역폭에 맞춰 수렴하며 비교적 진동이 작게 나타났다. BBR은

BDP를 기준으로 동작하기때문에, IW 크기에따른수렴시간의변화가

크지않았다. 또한대역폭이 클수록수렴 시간이감소했고, RTT가 증가

할수록 더 큰 BDP를 채워야 하기 때문에 수렴 시간이 증가했다.

<그림 3>평균Convergence Time: (a) CUBIC (b) paced CUBIC (c) BBR

Ⅴ. 결론

본 논문에서는 Mininet을 활용하여 RTT, 대역폭, 혼잡제어 알고리즘

변화에 따른 IW 크기의 성능 영향을 분석하였다.

짧은 파일 전송에서 CUBIC은 IW가 커질수록 FCT가 감소했으며,

pacing 적용 시 높은 RTT 환경에서 FCT가 크게 개선되었다. BBR은

IW와 RTT 변화에덜민감하며낮고안정적인 FCT를 유지했다. 대용량

전송에서는 CUBIC의 처리량 진동이 컸고, paced CUBIC은 전반적으로

더 빨리 수렴했다. BBR은 IW 변화에 둔감하며 안정적으로 수렴했다.

결과적으로 IW, RTT, 대역폭, 혼잡제어 알고리즘의 조합이 TCP 전

송 성능 최적화의 핵심 변수임을 확인하였다.

참 고 문 헌

[1] J. Rüth, C. Bormann, and O. Hohlfeld, “Large-Scale Scanning of
TCP’s Initial Window,” Proc. ACM Internet Measurement Conf.
(IMC), London, UK, pp. 1–7, Nov. 2017.

[2] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T.

Roughgarden, “Why Flow Completion Time is the Right Metric for

Congestion Control,” ACM SIGCOMM Computer Communication

Review, vol. 36, no. 1, pp. 59–62, Jan. 2006.

[3] J. Rüth, I. Kunze, and O. Hohlfeld, “TCP’s Initial Window –

Deployment in the Wild and its Impact on Performance,” IEEE Trans.

Network and Service Management, vol. 16, no. 3, pp. 1–14, Sep. 2019.

[4] “Mininet: An Instant Virtual Network on your Laptop (or other

PC),” Online. Available: https://mininet.org/.

[5] Ha, S., Rhee, I., and Xu, L., “CUBIC: A New TCP-Friendly

High-Speed TCP Variant,” ACM SIGOPS Operating Systems

Review, 42(5), pp. 64–74, Jul. 2008.

[6] Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., and Jacobson,

V., “BBR: Congestion-Based Congestion Control,” ACM Queue,

14(5), pp. 20–53, Oct. 2016.


