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요 약

저궤도위성환경과같이통신자원이제한되고연산성능이제약되는환경에서, 데이터프라이버시와통신효율을동시에확보하기위한

대안으로연합학습의중요성이부각되고있다. 본연구에서는 Jetson Nano 두대를클라이언트로활용하여, FP16 양자화와Top-K 희소화를

결합한경량연합학습시스템을제안한다. 실험을통한성능평가결과, 제한된연산자원과대역폭환경에서도학습이안정적으로수행됨을

확인할수있었고, 제안한알고리즘은기존 FedAvg 대비약 90∼95%의통신량을절감하면서도유사한수준의전역모델정확도를유지하였

다. 이를 통해 제안한 시스템이 저사양 엣지 및 위성 통신 환경에서도 효율적이고 안정적인 분산 학습이 가능함을 입증하였다.

Ⅰ 서론

저궤도위성(Low Earth Orbit; LEO) 네트워크의확산은전세계

어디서나초저지연(ultra-low latency) 통신이 가능한지능형엣지

인프라 환경의 기반을 마련하고 있다. 이러한 환경에서는 수많은

IoT 및 엣지 디바이스가위성네트워크를통해연결되어데이터를

로컬에서처리·학습함으로써, 중앙서버의존도를낮추는분산지능

구조가 요구된다 [1]. 그러나 LEO 위성 기반 통신은 위성의 빠른

궤도이동과제한된대역폭으로인해간헐적연결, 세션단절, 통신

지연이 빈번하게 발생하며, 이는 모델 학습의 안정성과 효율성을

저하시킨다 [2].

이러한 한계를 극복하기 위한 대안으로 연합학습(Federated

Learning; FL) 기술이 주목받고있다. 연합학습은 각 참여노드가

로컬 데이터를 유지한 채 모델 파라미터만 교환함으로써, 데이터

프라이버시를 보호하면서도 분산 학습을 수행할 수 있는 구조를

제공한다. 특히, 데이터 전송이 어려운 LEO 네트워크 환경에서는

연합학습을통해중앙서버로의데이터이동을최소화함으로써통신

효율을 향상시킬 수 있다 [3].

그러나 실제 위성 기반 또는 저사양 엣지 환경에서의 연합학습

구현은 제한된 연산 자원, 불안정한 네트워크, 발열 및 메모리 제

약등의물리적제약으로인해여전히어려운과제이다. 이에본 논

문에서는 연산 자원의 제약된 상황을 모사하기 위해 Jetson Nano

두 대를 클라이언트로, macOS 환경을 중앙 서버로 구성한 경량

연합학습시스템을 설계 및 구현하고, FP16 양자화와Top-K 희소

화를 결합한 경량 연합학습 알고리즘을 제안하여 성능의 우수성을

검증하고자 한다.

그림 2. LEO 위성 기반 연합학습 시스템

Ⅱ 제안 알고리즘

본논문에서는저사양엣지환경에서통신·메모리제약을완화하

면서도 FedAvg에준하는수렴특성을유지하기위한경량연합학습

알고리즘을 제안한다. 제안하는 알고리즘은 로컬 모델 파라미터

(), 전역 모델 파라미터(), 로컬 학습 후 파라미터 변화량

(∆  )에 대해, %의상위중요도파라미터만선택(Top-K)하
고이를 FP16 정밀도로양자화(Quantization)하여통신량을줄인다.

  QTopK  (1)

여기서, 는 번째 라운드에서 전역 서버로 보낼 경량화된 로
컬 파라미터이다. 서버는 수신된 파라미터를 FP32로 복원한 후,

FedAvg 기반의 가중 평균 방식으로 전역 모델을 갱신한다.
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   ·  
 

  
  ·FP 

(2)

여기서, 는 라운드 에서의 전역 모델 파라미터이며 는 클라
이언트 의 데이터 샘플 수, 은 참여 클라이언트 수이다.
Ⅲ. 시스템 구현 및 성능 평가

본 장에서는 제안한 알고리즘의 학습 정확도와 통신 효율

성을 평가하기 위한 실험 환경을 구성하였다. 중앙 서버는

Flower 서버를 실행하여, 두 개의 클라이언트들이 학습 세션에참

여할 수 있도록 gRPC 통신 채널을 개방한다.

서버는 초기 모델 파라미터를 각 클라이언트로 전송하고, 클라이

언트는 이를 기반으로 자신에게 불균등하게 할당된 MNIST 데이터

샤드(Shard)로 로컬 분류학습을수행한다. 학습이완료되면클라이

언트는 업데이트된 weight와 로컬 메트릭(loss, accuracy)을 서버로

전송하며, 서버는이를FedAvg 방식으로통합하여전역모델을갱신

한다. 라운드종료시서버는새로운전역weight를클라이언트로배

포하며, 지정된 라운드수만큼이과정을반복한다. 하드웨어구축에

사용된서버와클라이언트에대한상세사양은표 1에요약되어있다.

구분 항목 내용

Hardware
Server 8-core CPU, 16GBRAM

Client
NVIDIA Jetson Nano

(2GB) × 2

Software

Server OS macOS Sequoia 15.6.1
Client OS Ubuntu 18.04 LTS
Framework Flower 0,18,0
Deep Learning

Library
PyTorch 1.11

Dataset MNIST

Training
Strategy FedAvg

Communication gRPC (insecure mode)

표 1 실험 환경 구성 요약

그림 2는 제안한 알고리즘의파라미터 변화량(∆ )을 기반으
로, 상위 중요 파라미터만을 사용하는 Top-K 비율(%)에 따른
라운드별전역모델검증 정확도를나타낸다. Top-K 비율이 증가

할수록 FedAvg와 유사한 수준의 정확도를 유지하였으며, 특히

Top-K=20 이상에서는 수렴 속도와 최종 정확도 모두에서

FedAvg와 거의 동일한 성능을 보이는 것을 확인할 수 있었다.

그림 3은 라운드별 누적 통신량 변화를 비교한 결과이다.

Top-K=10의 경우 FedAvg 대비 약 95% 이상의 통신량 감소를

달성하였으며, Top-K=20에서도 약 90% 수준의 효율향상을보였

다. 이러한 결과는 제안한 알고리즘이 통신 자원이 제한된 환경에

서도 전송 효율을 극대화하면서, 학습 안정성과 수렴 특성을 유지

할 수 있음을 보여준다.

Ⅳ. 결론
저궤도위성 환경과같이통신자원이제한되고연산성능이낮

그림 3 Top-K 비율에 따른 라운드별 전역 모델 정확도 비교

그림 3. Top-K 비율에 따른 누적 통신량 비교

은 엣지 환경에서도 안정적인 학습이 가능하도록, FP16 양자화와

Top-K 희소화를 결합한 경량 연합학습 알고리즘을 제안하였다.

실험 결과, 기존 FedAvg 대비 약 90∼95%의 통신량을 절감하면

서도 유사한 수준의 전역 모델 정확도를 유지함을 확인하였다. 향

후 연구에서는 본 알고리즘을 실제 LEO 위성 네트워크 및 다중

엣지 클러스터 환경으로 확장하여, 동적 연결성과 지연을 고려한

적응형 통신 스케줄링 및 모델 동기화 기법을 연구할 예정이다.

ACKNOWLEDGMENT

본 연구는 2025년 과학기술정보통신부 및 정보통신기획평가원의 SW

중심대학사업의 연구결과 (2022-0-01068) 및 2025년도 교육부 및 대전광

역시의재원으로대전RISE센터의지원을받아 수행된지역혁신중심대학

지원체계(RISE)의 결과임 (2025-RISE-06-002)

참 고 문 헌

[1] J. Wen, J. Zhang, J. Wu, and C. Wu, “A survey on federated learning:

challenges and applications,” International Journal of Machine Learning and

Cybernetics, vol. 13, pp. 2523–2545, 2022.
[2] A. Kairouz et al., “Advances and open problems in federated learning,”
Foundations and Trends in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[3] E. Dritsas, M. Trigka, “Federated Learning for IoT: A Survey of

Techniques, Challenges, and Applications,” Journal of Sensor and Actuator
Networks, vol. 14, no. 9, 2025.


