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요 약  

 
본 논문에서는 mmWave 다중안테나 시스템에서 빔 추적 문제를 해결하기 위한 large language model (LLM) 활용 

방안을 제안한다. 단말의 이동성에 대한 수학적 모델이 존재하는 경우, 빔 추적 문제는 전통적인 extended Kalman filter 

(EKF) 방법으로 해결할 수 있다. 그러나 이러한 사전 정보가 주어지지 않는 현실적인 상황에서는 EKF 적용이 불가능하다. 

제안하는 LLM 방법은 in-context learning (ICL) 훈련 방식을 사용하여 수학적 모델에 의존하지 않으면서도 정교한 빔 

추적이 가능하다. 모의실험을 통해 제안하는 LLM 기반 빔 추적 방식의 우수성을 입증한다. 

 

Ⅰ. 서 론  

mmWave 대역 통신 시스템에서 시변 채널에 

동적으로 대응하기 위해서는 실시간으로 빔 방향을 

예측하는 정교한 빔 추적 기술이 필요하다 [1]. 시변 

채널의 상태천이 모델이 사전에 주어지는 경우 

extended Kalman filter (EKF)와 같은 전통적인 추정 

알고리즘을 적용할 수 있다. 그러나 실제 무선 

환경에서는 동적 모델을 알 수 없어 적용이 어렵다. 

모델 기반 빔 추적 방식의 한계를 극복하기 위해 

인공지능 기반의 데이터 주도적 빔 추적 기법이 

제안되었다[2]. Long short-term memory (LSTM)등의 

순환 신경망 모델을 활용하면 수학 모델 없이 정교한 빔 

추적이 가능하다. 그러나 과적합 문제로 인해 훈련 

데이터와 테스트 환경이 상이한 경우 성능이 저하된다. 

한편, 최근 large language model (LLM) 의 높은 추론 

능력이 다양한 modality 의 시계열 예측 문제에서 

검증되고 있다[3]. 소수의 예시들을 입력으로 사용하는 

in-context learning (ICL) 기능을 활용하면 LLM 의 

일반화 능력을 개선할 수 있다. 

본 논문에서는 mmWave 다중안테나 시스템의 빔추적 

문제를 ICL 구조로 재정의하여 LLM 을 학습하는 새로운 

빔 추적 기법을 제시한다. 제안하는 방식은 명시적 

상태천이식이나 채널 모델을 사용하지 않고, 과거 수신 

신호와 빔 방향 정보를 ICL 예시로 활용하여 최적 빔 

방향을 예측한다. 모의실험 결과 제안하는 방법이 종래의 

EKF 방식 대비 높은 정확도를 보임을 검증한다. 

 

Ⅱ. 시스템 모델 

𝑁𝑡 개의 송신 안테나가 배치된 기지국이 𝑁𝑟 개의 

안테나를 갖는 이동 단말에 데이터를 전송하는 mmWave 

대역 통신 시스템을 고려한다. 기지국과 단말은 모두 

uniform linear array (ULA) 구조를 사용하며, 안테나 

간격은 반파장으로 가정한다. 𝑡 번째 time slot 에서 

단말의 수신 신호 𝒚𝑡 ∈ ℂ𝑁𝑟×1는 다음과 같이 표현된다. 
𝒚𝑡 = 𝑯𝑡𝒙𝑡 + 𝒏𝑡 (1) 

여기서 𝒙𝑡 ∈ ℂ𝑁𝑡×1는 송신 신호, 𝑯𝑡 ∈ ℂ𝑁𝑟×𝑁𝑡는 mmWave 

채널 행렬, 𝒏𝑡~𝒞𝒩 (0, 𝜎𝑛
2 𝑰)는 복소 가우시안 잡음이다. 

mmWave 대역의 희소성을 고려하여 채널 행렬은 다음과 

같은 line-of-sight 형태로 모델링한다. 

𝑯𝑡 = 𝛼𝑡𝒂𝑅(𝜙𝐴,𝑡)𝒂𝑇(𝜙𝐷,𝑡)
𝐻

(1) 

여기서 𝛼𝑡는 복소 채널 이득, 𝒂𝑅(⋅) 및 𝒂𝑇(⋅)는 각각 단말 

및 기지국 ULA 의 array response 벡터, 그리고 𝜙𝐴,𝑡 및 

𝜙𝐷,𝑡 는 각각 angle-of-arrival (AoA) 및 angle-of-

depature (AoD)를 의미한다. 

빔 추적을 위해 상태 벡터를 다음과 같이 정의한다. 

𝑥𝑡 = [ℜ{𝛼𝑡}, ℑ{𝛼𝑡}, 𝜙𝑡,𝐴, 𝜙𝑡,𝐷]
𝑇

(2) 

상태 벡터의 시변성을 𝑛  차 autoregressive (AR) 

시퀀스로 다음과 같이 모델링한다. 

𝒙𝑡 = ∑ 𝑨𝑖

𝑛

𝑖=1

 𝒙𝑡−𝑖 + 𝒖𝑡 (3) 

이때 행렬 𝑨𝑖는 다음과 같이 정의한다. 

𝑨𝑖 = {
diag([𝜌, 𝜌, 1,1]), 𝑖 = 1

(
1

𝑛
) 𝑰, otherwise

 

𝜌는 자기회귀 계수이며, 𝐮𝑡~𝒩 (0, 𝚺𝑢)의 잡음이다. 잡음의 

공분산 행렬은 다음과 같이 정의된다. 

𝚺𝑢 = 𝑑𝑖𝑎𝑔([(1 − 𝜌2), (1 − 𝜌2), 𝜎𝐴
2 , 𝜎𝐷

2]) (6) 

 

Ⅲ. 제안하는 LLM 기반 빔 추적 방법 

GPT2를 backbone모델로 사용하는 LLM기반 빔 추적 

방식을 제안한다. ICL 기능을 활용하기 위해 과거 𝐿 개의 

time slot 에서 취득한 수신 신호 벡터와 추정한 

AoA/AoD {(𝑦𝑡−𝐿, 𝜙𝑡−𝐿), … , (𝑦𝑡−1 , 𝜙𝑡−1) } 를 few-shot 

예시로 사용한다. 이러한 문맥 정보를 기반으로, LLM 은 



 

제시된 현재 시점의 수신 신호 𝑦𝑡를 입력받아 최적의 빔 

방향을 출력하도록 설계한다. Time slot 𝑘의 입력 토큰 

𝑧𝑘는 다음과 같이 정의된다. 

𝑧𝑘   =  concat(ℜ{𝑦𝑘}, ℑ{𝑦𝑘}, 𝜙𝐴,𝑘 , 𝜙𝐷,𝑘) ∈ ℝ2𝑁𝑟+2𝑁𝑟
2

(7)  

마지막 time slot 의 경우, 아직 알 수 없는 빔 방향은 

0 으로 채운다.  

  Time slot 𝑡 의 ICL 예시 𝑆 =  (𝑧𝑡−𝐿 , … , 𝑧𝑡) 는 위치 

임베딩을 통해 입력 벡터 𝐸 로 변환되고, 이를 GPT2 

모델이 처리하여 출력 시퀀스 𝐻를 아래와 같이 반환한다.  

𝐻 =  (ℎ𝑡−𝐿 , … , ℎ𝑡) =  GPT2(𝐸) (8) 

여기서 GPT2(⋅) 은 𝑛ℎ𝑒𝑎𝑑 개의 head 및 𝑛𝑙𝑎𝑦𝑒𝑟 개 

transformer 블록으로 구성한다. 최종적으로, 전체 문맥 

정보를 포함하는 마지막 은닉 벡터 ℎ𝑡가 linear layer 를 

거쳐 빔 방향 예측값을 다음과 같이 생성한다. 

𝜙𝑡̂ =  [𝜙𝐴,𝑡
̂ , 𝜙𝐷,𝑡

̂ ] = Linear(ℎ𝑡) (9) 

LLM 은 mean-squared-error (MSE)를 최소화하도록 

다음의 loss function 으로 훈련한다. 

𝐿 =
1

𝑇
∑‖𝜙𝑡̂ − 𝜙𝑡‖

2
𝑇

𝑡=1

(10) 

제안하는 ICL 학습 메커니즘은 LLM 이 명시적 상태 

갱신 없이도 문맥 내 수신 신호의 패턴을 학습하여 

EKF 의 예측–갱신 과정을 데이터 기반으로 내재적으로 

수행하도록 한다. 

 

Ⅳ. 실험 결과  

본 절에서는 모의실험을 통해 제안하는 빔 추적 

기법의 우수성을 검증한다. GPT2 구조는 𝑛𝑙𝑎𝑦𝑒𝑟 = 2개의 

transformer 블록과 𝑛ℎ𝑒𝑎𝑑 = 4 개의 head 로 이루어져 

있으며, 임베딩 차원은 64 로 설정한다. LLM 의 훈련 

데이터는 AR(3) 동적 모델로 생성하고, 문맥 길이는 𝐿 =

3으로 고정한다. 훈련에는 Adam 알고리즘을 사용하고, 

learning rate는 10−4, batch size는 64 로 고정한다. 

 

 
그림 1. AR(1) 환경에서 MSE 성능 비교  

 
그림 1 은 제안하는 LLM 및 EKF 기반의 빔 추적 

기법의 누적 MSE 성능을 time slot 에 대해 나타낸다. 

LLM 방식의 일반화 능력을 검증하기 위해 테스트는 

훈련 환경과 상이한 AR(1) 동적 모델 데이터로 수행한다. 

훈련과 테스트 모두 signal-to-noise ratio (SNR)은 10 

dB 로 고정한다. 실험 결과, 제안하는 LLM 기반 빔 추적 

방식의 성능이 종래의 EKF 방법과 유사함을 확인할 수 

있다. LLM 의 모델 비의존성과 훈련/테스트 환경의 

상이함을 고려하면, 모델 기반 EKF 방식과 유사한 빔 

추적 성능을 보이는 것은 매우 고무적인 결과이다.  

 

 
그림 2. AR(3) 환경에서 MSE 성능 비교 

 

그림 2 는 AR(3) 테스트 환경에서의 MSE 성능 비교 

결과이다. SNR 10dB 인 상황에 대해서 제안하는 LLM 

방식의 누적 MSE 성능이 time slot 에 대해 완만한 

증가폭을 보인다. 이에 비해 EKF 방법은 AR(1) 형태의 

데이터를 추적하도록 설계되어 AR(3) 데이터에서는  

모델 불일치 문제로 누적 MSE가 빠르게 증가함을 알 수 

있다. 이러한 결과를 통해 제안하는 LLM 기반 빔 추적 

방식이 문맥 내 패턴을 스스로 파악하여 즉석에서 

일반화를 수행할 수 있다고 결론지을 수 있다. 

 

Ⅴ. 결론 

본 연구는 명시적 상태천이 및 잡음 통계 가정 없이 

관측 시퀀스만으로 각도를 추정하는 ICL 기반 LLM 빔 

추적 기법을 제안한다. 모의실험을 통해 제안하는 LLM 

방식이 종래의 모델 기반 빔 추적 알고리즘의 성능을 

상회함을 확인하였다.  
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