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요 약  
본 논문은 6G 환경에서 통합 센싱·통신·컴퓨팅(ISCC)과 Over-the-Air Federated Learning(AirFL)이 결합된 

시스템을 고려한다. 제안하는 시스템은 Uplink 구간에서 엣지 디바이스(ED)가 Target 을 향해 Probing 신호를 

송신하고, 그 반사 신호를 기지국(BS)이 수신하여 센싱을 수행하는 Passive Sensing 기반 구조로 설계된다. 본 

연구에서는 BS –ED –Target 으로 구성된 시스템 모델을 정의하였다. 이를 바탕으로 연합 학습 성능과 센싱 성능 

간의 상호 영향을 고려하여, 에러 갭을 최소화하는 최적화 문제를 전력 제약과 빔포밍 직교 제약 조건 하에 

공식화하였고, 이를 통해 정량적으로 분석할 수 있는 이론적 기반을 제공한다.

  

Ⅰ. 서 론  

다가오는 6G 시대의 통신망은 통신, 센싱, 엣지 컴퓨팅

이 결합된 ISCC(Integrated Sensing, Communication, and 

Computation)가 핵심 패러다임으로 부상하고 있다. 또한, 

Federated Learning(FL)은 다수의 엣지 디바이스가 원시 데

이터를 전송하지 않고, 각자 학습한 로컬 모델을 공유하

여 공통의 글로벌 모델을 협력 학습하는 분산 학습 구조

이다. 특히, AirComp(Over-the-Air Computation)를 이용한 

AirFL(Over-the-Air Federated Learning)은 동일 시간-주파수 

자원에서 아날로그 방식으로 모델을 동시 업로드·집계함

으로써, 통신 지연과 대역폭 요구량을 최소화하는 효율적

인 프레임워크를 제공한다. 그러나 ISCC 환경에서는 레

이더 에코와 모델 신호 간의 상호 간섭, 채널 페이딩, 수

신 잡음으로 인한 오차가 FL 의 집계 정확도와 수렴성능

을 저해한다. 대부분의 연구는 Downlink 중심의 빔포밍 

설계에 초점을 두고 있어, 실제 모델 집계가 이루어지는 

Uplink 단계의 물리적 제약을 충분히 반영하지 못했다. 

이에 본 논문에서는 Uplink 구간에서의 Passive Sensing 기

반 ISCC–AirFL 시스템 구조를 새롭게 제안한다. 기지국

은 능동적으로 레이더 신호를 송신하지 않고, 엣지 디바

이스가 Target 을 향해 Probing Signal 을 송신하고, 그 echo 

signal 을 BS 가 수신하여 센싱을 수행하는 분산형 Passive 

Sensing 구조를 적용한다. 이때, 엣지 디바이스는 학습을 

위한 모델 전송 신호와 센싱 Probing 신호를 동시에 송신

하며, BS 는 수신 빔포밍을 통해 두 신호를 구분하여 FL 

모델 집계와 센싱 정보 획득을  동시에 수행할 수 있다. 

이를 통해 BS 의 송신 전력 소모를 줄일 수 있으며, 엣지 

디바이스의 공간적 분산을 활용하여 다중각도 센싱 이득

과 높은 채널 다양성을 확보할 수 있다. 또한, 본 연구에

서는 엣지 디바이스의 송신 전력 내에서 FL 모델 전송 

전력과 센싱 전력의 비율을 동적으로 제어할 수 있는 전

력 제약 구조를 설계하였다. 이를 통해 학습 정확도와 센

싱 신뢰도 간의 상호 관계를 정량적으로 분석할 수 있으

며, 각 기능이 동일 자원을 공유할 때 발생하는 성능 트

레이드오프를 최적화 문제를 제안한다. 

Ⅱ. 본론 

본장에서는 6G 환경에서 통합 센싱·통신·컴퓨팅(ISCC)

과 Over-the-Air Federated Learning(AirFL)이 결합된 시스템

을 고려한다. 제안하는 구조는 Passive Sensing 기반 Uplink 

ISCC–AirFL 시스템으로, 다중 안테나 기지국(Base Station, 

BS), K 개의 단일 안테나 엣지 디바이스(Edge Device, ED), 

그리고 하나의 감지 대상(Target)으로 구성된다. BS 는 업

링크 신호를 수신하여 FL 모델을 집계함과 동시에 타겟

으로부터 반사된 센싱 신호를 수신함으로써 통합된 학습·

센싱 기능을 수행한다. 

 

그림 1. 시스템 모델 

제안하는 시스템의 핵심은 Passive Sensing 기반 업링크 

구조이다. 기존의 Active Sensing 방식에서는 BS가 능동적

으로 레이더 신호를 송신하고 반사파를 수신하였으나, 본 

연구에서는 업링크단계에서는 BS 가 송신을 수행하지 않

고 엣지 디바이스가 타겟을 향해 Probing 신호를 송신한

다. 각 엣지 디바이스의 송신 신호는 두 부분으로 구성된

다. 본 논문에서, downlink 통합 송신 모델은 [1]에서 참조 

할 수 있기 때문에 생략한다.  

A. Uplink 수신 및 Passive Sensing 모델 

업링크 단계에서 각 엣지 디바이스는 다운링크에서 수신

한 글로벌 모델을 기반으로 로컬 업데이트(Local Update) 

를 수행하며, 동시에 타겟을 향해 Probing 신호를 송신하

여 BS가 이를 수신해 센싱 기능을 수행한다. 즉, 본 연구
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의 업링크는 FL 학습과 패시브 센싱이 동시에 이루어지

는 통합 단계로 구성된다. BS는 능동 송신을 수행하지 않

으며, 엣지 디바이스가 송신한 신호 및 그 반사 에코를 

수신함으로써 모델 집계(AirFL Aggregation)와 환경 센싱

(Radar Sensing)을 병행한다. 

(i) 로컬 업데이트 단계 

엣지 디바이스 𝑖는 로컬 데이터셋 𝒟𝑖를 이용하여 수신한 

글로벌 모델을 로컬 손실 함수 𝐹𝑖에 대해 학습률 𝛾𝑡로 갱

신한다. 로컬 업데이트는 다음과 같다. 

이는 표준적인 FedAvg(Federated Averaging) 기반 학습 절

차로, 각 디바이스가 독립적으로 모델을 최적화한 뒤 업

링크를 통해 전송할 준비를 함을 의미한다. 이후 각 엣지 

디바이스는 전송 신호에 학습된 모델 파라미터 신호 

𝑞𝑖,𝑡
𝑢𝑙[𝑑]와 Probing 신호 𝑠𝑖

𝑢𝑙[𝑑]를 함께 포함하여 송신한다. 

(ii) 업링크 신호 모델 

업링크에서 BS 가 수신하는 복합 신호는 모델 전송 신호, 

타겟 반사 신호, 잡음 항의 합으로 표현된다. 

첫 번째 항은 엣지 디바이스들이 전송하는 FL 모델 신호

이며, 두 번째 항은 Probing 신호가 타겟에 반사되어 BS

로 도달하는 센싱 신호를 의미한다. 세 번째 항 𝑛𝑡
𝑢𝑙[𝑑] ∼

𝒞𝒩(0, 𝜎𝑢𝑙
2 𝐼𝑁𝑟

)은 업링크 수신 잡음이다. 이 식은 BS 가 송

신하지 않아도 엣지 디바이스가 송신한 신호를 통해 타

겟 감지가 가능함을 나타내며, 이는 본 논문이 제안하는 

Passive Sensing 구조의 핵심 차별점이다. 

(iii) 수신 빔포밍 직교 조건 

업링크에서 FL 신호 복원을 위한 빔포밍 벡터 𝑚𝑡
𝑓𝑙
는 타

겟 반사 신호와의 간섭을 제거하기 위해 다음의 직교 조

건을 만족해야 한다. 

한편, 센싱 신호를 추출하기 위한 빔포밍 벡터 𝑚𝑡
𝑟𝑎𝑑는 

업링크 통신 채널과 직교하도록 설계되어, 두 신호 간 상

호 영향을 최소화한다. 

즉, (3)은 FL 복원 경로에서 센싱 간섭을 제거하고, (4)는 

센싱 경로에서 FL 신호 성분을 제거하여, 두 기능이 서로 

간섭 없이 병행 수행될 수 있도록 한다. 

(iv) 수신 빔포밍 출력 

BS는 수신 빔포밍 행렬 𝐌𝑡 = [(𝐦𝑡
𝑓𝑙

)𝐻; (𝐦𝑡
𝑟𝑎𝑑)𝐻]를 적용하

여 수신 신호를 두 개의 독립 성분으로 분리한다. 

𝑌𝑡[𝑑] = 𝐌𝑡𝐫𝑡
𝑢𝑙[𝑑] = [

𝑦𝑡
𝑢𝑙−𝑓𝑙

[𝑑]

𝑦𝑡
𝑢𝑙−𝑠[𝑑]

]  

= [

(𝐦𝑡
𝑓𝑙

)𝐻(∑ 𝐡𝑖,𝑡
𝑢𝑝

𝑝𝑖,𝑡
𝑓𝑙

𝑞𝑖,𝑡
𝑢𝑙[𝑑] + 𝐧𝑡

𝑢𝑙[𝑑]
𝑖∈𝜅

)

(𝐦𝑡
𝑟𝑎𝑑)𝐻(𝛽𝐛(𝛉) ∑ ℎ𝑖,𝑡𝑎𝑟𝑔𝑒𝑡𝑝𝑖,𝑡

𝑠 𝑠𝑖
𝑢𝑙[𝑑] + 𝐧𝑡

𝑢𝑙[𝑑]
𝑖∈𝜅

)
] (5) 

상단의 𝑦𝑡
𝑢𝑙−𝑓𝑙

[𝑑] 은 FL 모델 전송 성분으로, BS 가 

AirComp 방식으로 모든 디바이스의 신호를 합성하여 모

델을 집계(Aggregation)한다. 하단의 𝑦𝑡
𝑢𝑙−𝑠[𝑑]은 센싱 반사 

성분으로, BS가 타겟 방향의 수신 빔포밍을 통해 환경 정

보를 추정한다. 이처럼 BS 는 하나의 수신 프레임 내에서 

학습과 센싱을 동시에 수행할 수 있다. 

(v) 업링크 센싱 SNR 분석 

Passive Sensing 구조에서 BS 의 센싱 성능은 업링크 수신 

SNR 로 표현된다. 타겟의 반사계수 𝛽 , 빔포밍 벡터 정합

도, 엣지 디바이스의 Probing 전력 𝑝𝑖,𝑡
𝑠 에 의해 SNR 이 결

정된다. 

센싱 기능이 안정적으로 수행되기 위해서는 SNR𝑡
𝑢𝑙 ≥ 𝛿𝑢𝑙

을 만족해야 하며, 이는 타겟 탐지 신뢰도 및 거리 추정 

정확도를 보장하기 위한 최소 조건이다. 

(vi) 문제 정식화 

위 분석을 바탕으로, 본 연구는 FL 수렴 성능과 센싱 성

능 간의 총 에러 유발 갭(Total Error Induced Gap) 

Φ(𝐦𝑓𝑙 , 𝐟, 𝐯, 𝑁)을 최소화하는 최적화 문제를 정의한다. 

         min 
𝐦𝑓𝑙,𝐟,𝑣,𝑁,𝑝

𝑖,𝑡
𝑓𝑙

,𝑝𝑖,𝑡
𝑠

           Φ(𝐦𝑓𝑙 , 𝐟, 𝐯, 𝑁)  

                            s. t             SNR𝑑𝑙 ≥ 𝛿𝑑𝑙 , 

                                              SNR𝑢𝑙 ≥ 𝛿𝑢𝑙 , 

                                              ∥ 𝐟 ∥2 +∥ 𝐯 ∥2≤ 𝑃𝐵𝑆, 

                                              𝑝𝑖,𝑡
𝑓𝑙

+ 𝑝𝑖,𝑡
𝑠 ≤ 𝑃𝑒𝑑 , 

                                             (𝐦𝑡
𝑓𝑙

)𝐻𝐛(𝜃) = 𝟎. 

(7) 

각 제약식은 시스템의 물리적 제약과 성능 보장 조건을 

나타낸다. SNR𝑑𝑙과 SNR𝑢𝑙제약은 각각 다운링크와 업링크 

구간에서 센싱 신뢰도를 보장하기 위한 조건이며,  

∥ 𝐟 ∥2 +∥ 𝐯 ∥2≤ 𝑃𝐵𝑆 는 기지국의 총 송신 전력 한계를, 

𝑝𝑖,𝑡
𝑓𝑙

+ 𝑝𝑖,𝑡
𝑠 ≤ 𝑃𝑒𝑑는 엣지 디바이스의 전력 분할 제약을 의

미한다. 마지막으로 (𝐦𝑡
𝑓𝑙

)𝐻𝐛(𝜃) = 𝟎은 FL 수신 빔포머와 

레이더 빔포머 간 직교성을 유지하여 상호 간섭을 방지

하기 위한 조건이다. 

 

Ⅲ. 결론  

본 논문은 업링크 패시브 센싱 기반 ISCC–AirFL 시스

템을 제안하고, 업링크 수신 신호 모델과 빔포밍 구조, 

업링크 SNR 및 FL 집계 오차의 상계식을 도출하였다. 이

를 통해, 업링크에서 모델 전송 전력과 센싱 전력의 분할 

비율이 학습 수렴도와 센싱 신뢰도 간의 Trade-off 를 결

정함을 규명하고, 이를 반영한 총 오차 유발 갭 최소화 

문제를 SNR·전력·직교 제약과 함께 공식화하였다.  

향후 연구에서는 교대 최적화 기반의 공동 빔포밍 및 전

력 제어 알고리즘을 설계하고, 디바이스 선택과 센싱·학

습 동적 자원 할당 기법을 추가적으로 연구할 예정이다. 

또한, 실제 시뮬레이션을 통해 수렴 한계와 전력–성능 관

계를 정량적으로 검증함으로써 제안 구조의 실용성을 평

가할 계획이다. 
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𝒘̂𝑖,𝑡
′ = 𝒘̂𝑖,𝑡 − 𝛾𝑡∇𝐹𝑖(𝒘̂𝑖,𝑡; 𝒟𝑖) (1) 

𝒓𝑡
𝑢𝑙 [𝑑] = ∑ 𝒉𝑖,𝑡

𝑢𝑝
𝑝𝑖,𝑡

𝑓𝑙
𝑞𝑖,𝑡

𝑢𝑙 [𝑑] + 𝛽𝒃(𝜽)

𝑖∈𝜅

∑ ℎ𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑖,𝑡
𝑠 𝑠𝑖

𝑢𝑙[𝑑]

𝑖∈𝜅

+ 𝒏𝑡
𝑢𝑙 [𝑑]. (2) 

(𝐦𝑡
𝑓𝑙

)𝐻𝐛(𝜽) = 𝟎. (3) 

(𝐦𝑡
𝑟𝑎𝑑)𝐻𝐡𝑖,𝑡

𝑢𝑝
= 0 ∀𝑖 ∈ 𝜅. (4) 

SNR𝑡
𝑢𝑙 =

∣ 𝛽 ∣2 (𝒎𝑡
𝑟𝑎𝑑 )𝐻 𝐛(𝜃) |∑ ℎ𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑖 ,𝑡

𝑠 𝑠𝑖
𝑢𝑙 [𝑑]

𝑖∈𝜅
|

2

𝐛(𝜃)𝐻 𝐦𝑡
𝑟𝑎𝑑

(𝐦𝑡
𝑟𝑎𝑑 )𝐻 (𝜎𝑢𝑙

2 𝐈𝑁𝑟
)𝐦𝑡

𝑟𝑎𝑑
 

(6) 


