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Abstract 

This paper investigates an adaptive duplex mode selection strategy for hybrid full-duplex/half-duplex (FD/HD) integrated sensing and 

communication (ISAC) networks. The problem is formulated as an optimization task aimed at maximizing network throughput while 

minimizing interference. However, the resulting formulation is NP-hard and nonconvex, making it intractable to solve in polynomial time. 

To address this challenge, we employ deep reinforcement learning (RL) to develop an adaptive duplex mode control policy. Simulation 

results demonstrate that the proposed approach significantly enhances network spectral efficiency, highlighting the promising potential of 

RL-based strategies in future ISAC-enabled communication networks.

Ⅰ. INTRODUCTION  

Over the years, radar technology operating within its dedicated 

spectrum has played a crucial role in numerous applications such 

as remote sensing, surveillance, and traffic control, among others 

[1]. Meanwhile, communication technology has reached its 

operational limits due to rapid advancements that demand ever-

increasing data rates within limited spectral resources. To address 

the challenge of spectrum scarcity, attention has shifted toward 

sharing the spectral bands traditionally occupied by incumbent 

radar systems, an approach that has given rise to Integrated 

Sensing and Communication (ISAC) systems. ISAC technology 

extends conventional radar capabilities by enabling simultaneous 

communication, localization, tracking, and other functions within 

a unified framework. However, effective coexistence between 

sensing and communication components remains a key challenge, 

particularly in the areas of resource allocation and interference 

management. Numerous studies on ISAC have primarily focused 

on aspects such as beamforming design, time and bandwidth 

allocation, and waveform optimization, with most investigations 

confined to the half-duplex (HD) domain. In recent works, full-

duplex (FD) operation has been introduced into ISAC systems to 

leverage its potential advantages, including enhanced spectral 

efficiency and reduced latency, made possible by enabling 

simultaneous transmission and reception over the same frequency 

band [2]. However, the performance of FD-based ISAC remains 

constrained by various forms of interference, such as self-

interference (SI) and multi-user interference, which can 

significantly degrade system reliability. 

Several SI cancellation techniques have been proposed in 

literature, including analog, digital, and antenna-based methods. 

However, many of these approaches achieve SI mitigation at the 

expense of increased power consumption, while others fail to 

completely eliminate residual SI. This limitation not only affects 

system performance but also leads to higher operational costs for 

network operators. In this work, we propose the adoption of a 

hybrid FD/HD ISAC network to mitigate the inherent limitations 

of FD operation while preserving its potential advantages. 

Specifically, we formulate an optimization framework aimed at 

maximizing the overall network throughput while minimizing 

interference effects. To achieve this, we employ a reinforcement 

learning–based approach to design an adaptive duplex mode 

selection strategy, as elaborated in the subsequent sections of this 

paper. 

Ⅱ. SYSTEM MODEL AND PROBLEM FORMULATION 

A. System Model  

We consider a single cell ISAC system constituting a FD-BS 

equipped with a two uniform linear array (ULA) antenna structure 

divided into 𝑁𝑡  ULA transmit and 𝑁𝑟  ULA receive antennas 

respectively, as shown in Fig. 1. The BS operates as a dual- 

function radar-communication (DFRC) handling sensing and 

communication via detection of a target while simultaneously 

receiving and transmitting signals from 𝐾𝑢 uplink (UL) signals 

and to 𝐾𝑑 downlink (DL) single antenna users, respectively. To 

implement mode selection, we introduce a binary mode selection 

variable 𝛼  such that when 𝛼 = 1 , our system operates in FD 

mode while 𝛼 = 0 indicates  HD operation. 

   

 
Fig. 1. An illustration of an FD ISAC network 

B. Problem Formulation 

According to Fig.1, during FD operation, the DL 

communication signal is affected by multi-user interference, UL-

to-DL interference, and interference due to sensing, while the UL 

communication signal is affected by SI and interference due to 

target reflection. On the contrary, DL and UL transmission is 

separated via equal time division to mitigate interference during 

HD operation. With that said, we examine the performance of our 

proposed system by formulating an optimization problem (P1) to 

analyze the sum-rate of the network subject to sensing mutual 

information (MI) constraint C1 and duplex mode selection 

constraint C2 as follows.  
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III. PROPOSED RL ALGORITHM DESIGN 

A. Markov Decision Process Model Formulation 

It is evident that problem (P1)   is nonconvex and NP-hard, 

which makes it difficult to solve. Although off-shelf CVX solvers 

can be employed to solve such a problem, they are limited by 

complexity. We therefore propose the use of deep RL to address 

the problem. In this setting, we model the problem as a Markov 

decision process (MDP) defined by < 𝒮, 𝒜, 𝒯, ℛ, 𝛾 >, where 𝒮 



is the environment state space, 𝒜 is the action space, 𝒯 is the 

transition probability from one state to another, ℛ  is a reward 

function while 𝛾 is a discount factor [3]. Generally, at time step t 

an agent interacts with the environment in state 𝑠𝑡 ∈ 𝒮 and takes 

an action 𝑎𝑡 ∈ 𝒜 to obtain a reward 𝑟𝑡 ∈ ℛ. Consequently, the 

goal of the agent is to learn a policy 𝜋  that maximizes the 

cumulative reward. In the sequel, we deploy a model-free MDP 

based RL scheme to attain the optimal policy 𝜋∗ that yields the 

maximum cumulative reward, and the details of the proposed MDP 

model are as follows. 

a) State: It consists of the channel state information and the 

duplex mode selection variables such that at time step t  

𝑠𝑡 = [HDL(𝑡), HUL(𝑡), Hrad(𝑡), HSI(𝑡), 𝛼(𝑡 − 1)], 
where {HDL(𝑡), HUL(𝑡), Hrad(𝑡), HSI(𝑡)}  represent DL, UL, 

radar, and SI channel matrices respectively. 

b) Action: The action space contains the duplex mode 

selection variable such that at time step t 

𝑎𝑡 =  𝛼(𝑡) ∈ {0,1} 

c) Reward: The reward is motivated by the objective of this 

work associated with maximizing the network throughput 

via desirable duplex mode selection. The reward at time 

step t is therefore given by 

     𝑟𝑡 = 
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B. Proposed Proximal Policy Optimization Algorithm 

Due to the discrete nature of our action in the proposed MDP 

model, it would be beneficial to adopt a desirable RL method. 

Some of such potential schemes include deep Q-network (DQN) 

and proximal policy optimization (PPO) [3,4]. DQN is sample 

efficient due to its use of an experience replay buffer to store and 

reuse past experiences, however, due to the complexity of our 

problem, we use PPO owing to its demonstrated benefits in 

balancing exploration and policy improvement. PPO derives its 

performance from the application of clipping to a surrogate 

objective function, which ensures stability and full control when 

optimizing the policy. This objective function can be given by 

𝐿clip(𝜃) = 𝔼[min(𝑟𝑡(𝜃)𝐴̂𝑡 , clip(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)], 

where 𝜖  is the clipping threshold while 𝐴̂𝑡 = 𝛿𝑡 + 𝛾𝜆𝑞𝐴̂𝑡+1 , is 

the advantage function with 𝛿𝑡  and 𝜆𝑞  denoting the temporal-

difference (TD) error and the balancing weight in generalized 

advantage estimation (GAE), respectively. Additionally, 𝑟𝑡(𝜃) is 

the probability ratio between new and old policies such that 

𝑟𝑡(𝜃) = 𝜋𝜃(𝑎𝑡|𝑠𝑡) (𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡))

−1
, 

where 𝜋𝜃(𝑎𝑡|𝑠𝑡) is the action probability distribution for action 

𝑎𝑡  given state 𝑠𝑡  under policy network parameter 𝜃 . The 

learning procedure of our proposed MDP model follows the layout 

similar to the PPO algorithm discussed in [4]. Furthermore, Fig. 2 

shows the execution of PPO-RL for our proposed MDP model.  

 

 
Fig. 2. PPO-based learning for the proposed MDP model. 

IV. PERFORMANCE EVALUATION 

 

In our simulations, we consider a single BS equipped with 𝑁𝑡 =
𝑁𝑟 = 8  antennas, a single target and 𝐾𝑑 = 𝐾𝑢 = 2  users, 

operating under 20GHz frequency. The UL and DL transmit power 

are set 23 dBm and 30 dBm respectively,  the bandwidth set to 

200MHz, the threshold set to 0.7 nats/s/Hz, and residual SI 

variance set to 110dBm. We evaluate the performance of the 

proposed scheme (PPO) via rewards and sum rate in comparison 

with DQN as follows. 

Fig. 3 illustrates the variation of the rewards and sum rate with 

the number of updates (episodes). It shows that PPO is generally 

outperforming DQN by a 2% gap due to its ability to perform more 

exploration with stability and full control in policy improvement. 

This shows that DQN incurs more constraint violations compared 

to PPO. Briefly, PPO obtains an average reward of 350 and 

average rate of 1.75 compared to DQN’s 343 and 1.71 average 

reward and average rate respectively. This performance renders 

PPO more efficient for our proposed duplex mode selection RL 

framework.   

  

 
Fig. 3. Reward and sum rate versus the number of updates. 

V. CONCLUSION 

In this article, we have examined a duplex switching strategy for 

a hybrid FD/HD ISAC network. We have derived an optimization 

problem to maximize network throughput while minimizing the 

interference. We have further proposed a PPO-based RL to 

optimize the duplex selection variable and improve spectral 

efficiency. The simulation results show promising potential of 

including RL techniques in future network generations to improve 

network performance amidst the high complexity and network 

dynamics. In our future work, we hope to investigate our system 

model by including beamforming with highly mobile users and 

targets.  
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