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요 약

본 연구는 저사양 임베디드 환경에서 실시간 처리가 가능한 경량화 영상 특징점 추출 기법을 제안한다. 기존 LSD와 SuperPoint 알고리즘은 높은
정확도를 제공하지만, 연산량과전력 소모가 커 Jetson Nano와 같은 저전력 플랫폼에서 실시간 운용이 어렵다. 이에 본 연구는 저 사양환경에서 영상
의 구조 정보를활용하여선 기반 관심 영역(ROI: Region Of Interest)에 ORB(Oriented FAST and rotated BRIEF) 기법을적용하여 연산의 효율성과
정합안정성을 동시에확보하는 ROI-ORB 특징점추출기법을제안한다. 제안 기법은 Canny 엣지 검출과허프변환으로선분을추출하고, 해당 영역을
관심영역(ROI)으로 설정하여 ORB 특징점을선택적으로 검출한다. 이를 통해불필요한 연산을줄이면서도구조적으로의미 있는영역에서의유효매칭
수와 정합 신뢰도를 향상시켰다. KITTI Stereo Dataset을 이용한 실험 결과, ROI-ORB는 기존 ORB 대비 처리 속도와 메모리 효율이 개선되었고,
매칭 품질과 정합 안정성이 동시에 향상되었다. 따라서 제안 기법은 저전력·저사양 플랫폼에서 실시간 비전 인식 성능을 확보할 수 있는 효율적이고
실용적인 접근법으로 평가된다.

Ⅰ. 서 론

최근자율주행 로봇, 드론, 실내 물류 시스템 등 저전력임베디드 플랫폼

에서 실시간 영상 인식의 수요가 급격히 증가하고 있다. 그러나 대부분의

V-SLAM(Visual Simultaneous Localization and Mapping) 시스템은 고

성능 연산자원을전제로 설계되어, Jetson Nano와 같은저사양환경에서

는실시간운용이어렵다. [1], [2] 이에 따라기존연구들은연산량을단순

축소하거나, FPGA·MCU 기반의 하드웨어 가속 [3] 또는 딥러닝 기반 특

징점 추출 모델을 양자화·경량화 [4] 하는 방식으로 대응해왔다.

그러나 연산 축소는 특징점의 정확도와 반복성을 저하시키고, 하드웨어

가속은 비용·보급성 한계를 지니며, 딥러닝 경량화는 여전히 메모리·전력

소비 문제를 남긴다. 이러한 제약 속에서 저사양 환경에서도 안정적이고

실시간으로 동작할 수 있는 소프트웨어 중심의 경량화 접근이 요구된다.

본 연구는 영상 내 구조 정보를 활용한 선 기반 ROI 전처리(ROI-ORB)

접근을 통해, 저전력 환경에서도 연산 효율성과 정합 안정성을 동시에 확

보하는 경량화 시각 인식 기법을 제안한다. [5]

Ⅱ. 본론

제안 기법은 영상 내 구조 정보를 활용하여 저전력 환경에서도 실시간

시각 인식이 가능하도록 설계되었다. 입력 영상에서 먼저 Canny 엣지 검

출과 허프 변환(HoughLinesP)을 수행하여 주요 선형 구조를 탐지하고,

검출된 선분의 끝점과 주변 영역을 관심영역(ROI)으로 설정한다. 이후

ROI 내에서만 ORB 알고리즘 [6] 을 적용하여특징점을 추출하고, 비최대

억제(non-max suppression)와 격자 기반 분포 제어(grid control)를 통해

중복 검출을 방지하였다. 이러한 전처리 과정은 전체 영상 대비 약 40 %

수준의 연산만으로 구조적으로유의미한 특징점을 확보하게 하며, 저전력

플랫폼에서도 안정적인 실시간 처리가 가능하다.

ROI 기반 전처리 단계는 단순한 영역 제한이 아니라, 영상의 기하학적

구조를반영한특징점선택전략으로이해할수있다. 일반적인전역 ORB

추출 방식은 균일 분포를 유지하더라도 의미 없는 평탄 영역에서 불필요

한 특징점을 생성하는 문제가 있다. 반면 제안된 ROI-ORB 접근법은 선

형 엣지 정보를 통해 물체 경계와 형태, 구조적 윤곽을 보존하는 특징점

집합을 형성함으로써 특징점 정합의 신뢰도를 향상시킨다.

그림 1. 제안 기법(ROI-ORB)의 전체 처리 흐름도

그림 1은 본 연구에서제안한 ROI-ORB 기법의 데이터흐름을시각적으

로 나타낸 것이다. 점선으로 표시된 ROI-ORB Stage는 선 기반 구조 인

식과 ROI 설정, ORB 특징점 추출이 연속적으로 이루어지는 핵심 구간으

로, 프론트엔드의 계산효율성과 정합안정성을 동시에 결정한다. 이 모듈

에서 생성된 고신뢰 특징점은 이후 StereoBM 기반 시차 계산과 해밍 거

리 정합 단계로 전달되어 깊이 추정 및 맵 업데이트의 정확도를 높인다.

그림 2 ROI-ORB 기반 특징점 추출 과정의 시각적 예시



그림 2는 ROI-ORB 단계의 처리 과정을 시각적으로 보여준다. 입력 영

상에서 검출된 선형영역은 라인마스크(Line Mask)로표현되며, 이 영역

내에서만 ORB 특징점이추출된다. 이를 통해 영상의구조적정보가 특징

점 검출 과정에 직접 반영되며, 잡음이나 무의미한 배경 영역에서의 불필

요한연산을효과적으로억제한다. 이와 같은 ROI-기반 특징점선별은결

국 정합의 안정성과 지도 생성의 정확도를 향상시키는 핵심 요인으로 작

용한다.

결과적으로 ROI-ORB는 영상의 구조 정보를 효율적으로 활용하는경량

화 비전 프론트엔드로 기능하며, 저전력 환경에서도 실시간 시각 인식이

가능함을 확인하였다.

Ⅲ. 성능 평가

본 연구의 제안 기법인 ROI-ORB의 성능은 NVIDIA Jetson Nano와 동

일한 사양의 저사양 환경(Windows 기반, 단일 CPU 스레드 조건) 에서

검증하였다. 구현은 OpenCV 4.5.5 라이브러리를 기반으로 이루어졌으며,

평가에는 공인 데이터셋인 KITTI Stereo 2015 [8] 가 사용되었다. 비교

대상은 기존 ORB(전역 추출) [6], LSD(line segment detector) [7], 그리

고 제안된 ROI-ORB의 세 가지로 설정하였다. 모든 실험은 동일 해상도

(1280×720)에서 수행되었으며, 처리 속도(FPS), 정합률(Matching

Accuracy), 평균키포인트 수, 메모리 사용량을 주요 평가 지표로 삼았다.

표 1의 결과에서 볼 수 있듯, 제안된 ROI-ORB는 기존 ORB 대비 전체

키포인트 수를 약 40 % 감소시키면서도 정합률을 5 % 이상 향상시켰다.

이는 ROI 기반 선별로 불필요한 평탄 영역의 특징점을 제거함으로써 매

칭 안정성을 높였기 때문이다. 또한 전체 처리 속도는 22.4 FPS로, LSD

대비 2.1 배, ORB 대비 1.5 배 빠른 성능을 보였다.

그림 3. ORB, LSD, ROI-ORB 기법의 특징점 정합 결과 비교

(KITTI Stereo 2015 Dataset)

그림 3은 동일한스테레오영상에대해 ORB, LSD, ROI-ORB를 각각적

용했을 때의 특징점 정합 결과를 시각적으로 비교한 것이다. 빨간 원으로

표시된 영역은 신호등과 같은 세부 구조물이 존재하는 구간으로, 정합 정

확도의 차이가 뚜렷하게 나타나는 부분이다. 기존 ORB는 영상 전역에서

키포인트가과도하게분포하며, 평탄한배경 영역에서도 불필요한 대응점

이 다수 생성된다. LSD는 선분 중심의 정합을 수행하지만구조적일관성

이 부족하고, 정합선의 밀도 또한 불균등하다. 반면 제안한 ROI-ORB는

선형 구조를 중심으로 특징점을 추출하여 물체 경계와 세부 윤곽 부근에

정합선이 집중되며, 불필요한 대응점이 현저히 줄어든다. 특히 원으로 표

시된영역에서 ROI-ORB는 신호등기둥과차선 등구조적 패턴을안정적

으로추적함으로써정합 신뢰도와공간적일관성이크게 향상됨을확인할

수있다. 이러한결과는제안기법이구조적으로의미있는영역에집중하

는 정합 특성을 가지며, 기존 기법 대비 실질적인 시각 인식 안정성을 확

보했음을 보여준다.

또한 Jetson Nano 환경에서 GPU 가속 없이도 20 FPS 이상의 실시간

처리 성능을 유지하였으며, 메모리 사용량도 약 20 % 감소하였다. 이는

제안된 ROI-ORB가 하드웨어 의존 없이 소프트웨어 수준의 경량화와 효

율성을 달성했음을 의미한다.

Ⅳ. 결론

결론적으로 ROI-ORB는 영상의 구조적 정보를 활용하여 연산 효율과

정합 안정성을 동시에 확보한 경량 프론트엔드로, 저전력 임베디드 환경

에서도 실시간 시각 인식이 가능함을 입증하였다.

향후 연구에서는 ROI 영역을장면의변화나조명상태에따라자동조정

하는 적응형 ROI 모델과 딥러닝 기반 특징점 검출기와의 하이브리드 통

합 구조를 개발하여 성능과 일반화 능력을 더욱 향상시킬 예정이다.
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기법
평균

키포인트 수
정합률(%)

처리

속도(FPS)

메모리

사용량(MB)

ORB

(전역)
1,220 82.3 14.8 310

LSD 980 79.1 10.6 295

ROI-ORB

(제안)
730 87.5 22.4 248

표 1. 기존 기법과 제안 기법(ROI-ORB)의 성능 비교 결과


