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요 약  

 
본 논문에서는 별도의 인프라 없이 스마트폰 내장 센서를 활용하여 실내 위치를 추정하는 지자계 기반 측위 기법을 제안하였다. 건물 

내부의 철골 구조에 의해 형성되는 고유한 지자계 분포를 Fingerprinting 데이터로 구축하고, 이를 다층 퍼셉트론(MLP) 모델로 학습하여 

위치를 분류하였다. 또한 Hard-iron 및 Soft-iron 보정을 통해 센서 왜곡을 제거하고, 보행자 추측항법(PDR)을 결합하여 연속적인 이동 

궤적을 추정하였다. 실험을 통해 제안기법이 최대 97.3%의 측위 정확도를 제공함을 확인하였다. 구현된 프로토타입의 시연 영상은 [1]에서 

확인 가능하다. 

 
Ⅰ. 서 론  

위성 신호 기반의 GPS는 건물 내부나 지하와 같은 환경에서는 

신호 감쇠와 다중 경로 간섭으로 인해 정확한 위치 측정이 

어렵다. 이러한 한계를 보완하기 위해 Wi-Fi 또는 BLE 비콘 

등을 활용한 다양한 실내 측위 기술이 제안되었다.[2][3] 그러나 

이러한 방식은 별도의 인프라 구축 비용 등 확정성에 한계가 

있다. 

이에 대한 대안으로 최근 주목받는 것은 지자계 기반 측위이다. 

건물 내부의 철골 구조나 전기 설비로 인해 형성된 지자계 

분포는 공간마다 고유한 패턴을 가지며, 시간이 지나도 

안정적으로 유지된다. 또한 추가 인프라가 필요하지 않아 비용 

측면에서도 유리하다. 본 논문에서는 지자계 Fingerprinting 기반 

측위를 구현하고, 센서 보정 및 보행자 추측항법(PDR)을 결합해 

정밀도를 높이는 방식을 제안한다. 

 

Ⅱ. 본론  

본 논문에서는 별도의 인프라 없이 스마트폰 내장 센서만을 

활용하여 실내 위치를 특정하는 측위 시스템을 제안한다. 절대 

위치를 추정하는 지자계 Fingerprinting과 상대적 이동 경로를 

계산하는 보행자 추측항법(PDR)을 결합하여 오차를 최소화하고 

정확도를 높였다. 

2.1 Fingerprinting 방식  

지자계 Fingerprinting은 실내 공간에서 고유하게 나타나는 

자기장 분포를 이용해 위치를 식별하는 방식이다. 건물 내부의 

철골 구조물이나 전자기기, 배선 등은 지구 자기장을 왜곡시키며, 

이러한 환경적 요인으로 인해 공간마다 다른 자기장 패턴이 

형성된다. 동일한 위치에서는 반복적으로 유사한 값이 관측되고, 

위치가 달라지면 값의 분포도 달라지기 때문에, 이를 활용하면 

별도의 인프라 없이도 특정 위치를 안정적으로 구분할 수 있다. 

데이터 수집은 영남대학교 IT관 3층 복도에서 진행되었다. 

그림 1과 같이 복도 전체를 균일하게 커버하기 위해 약 4.5m 

간격으로 총 29개의 지점을 설정하고, 각 지점에서 스마트폰을 

이용해 자기장(x, y, z)과 방위각 데이터를 수집하였다. 일정 시간 

동안 기록된 데이터는 시계열 형태로 벡터화되어, 해당 지점을 

대표하는 특징으로 구성되었다. 

 

 
그림 1. 지자계 데이터 수집 포인트 

 

2.2 MLP 학습 및 센서 보정 

수집된 Fingerprinting 데이터는 비선형적이고 다차원적인 

특성을 지니기 때문에 단순한 선형 모델만으로는 효과적인 

분류가 어렵다. 이러한 한계를 극복하기 위해 본 논문에서는 

다층 퍼셉트론(Multi-Layer Perceptron, MLP)을 적용하였다. 

본 논문에서 사용된 입력 데이터는 스마트폰 센서로부터 얻은 

자기장 벡터(Magnetic field vector)와, 자이로스코프 및 

가속도계 데이터를 이용해 계산한 기기의 공간상 자세 정보를 

함께 포함한다. 

자기장 벡터는 x, y, z축 방향의 자기장 세기(Bx, By, Bz)로 

구성되며, 기기 자세 정보는 오일러 각(Euler angles: roll, pitch, 

yaw)으로 표현된다. 두 속성을 결합하여 총 6차원 입력 벡터를 

구성하였으며, 이를 MLP 모델의 입력층에 적용하였다. 은닉층은 

512– 256– 128개의 뉴런으로 이루어진 3개 층으로 설계하였고, 

각 은닉층에는 ReLU 함수를 적용하여 두 속성 간의 비선형적 

상호작용을 효과적으로 학습하도록 하였다. 출력층은 위치 

클래스 개수에 해당하는 노드로 구성되며, Softmax 함수를 통해 

각 위치에 대한 확률을 산출한다. 

한편, 자기장 센서에는 두 가지 대표적인 왜곡 현상이 

존재한다. 첫 번째는 Hard-iron 효과로, 스마트폰 내부 부품이나 

주변 자성체의 영향으로 자기장이 일정한 방향으로 지속적으로 

편향되는 현상이다. 두 번째는 Soft-iron 효과로, 건축물 철골 

구조물이나 대형 금속 물체에 의해 자기장 분포가 찌그러져 원래 

원형이어야 할 데이터가 타원형으로 나타나는 현상이다. 이 두 

가지 문제는 동일한 위치에서 방향을 바꿔 측정할 경우 값이 

일관되지 않게 나타나는 주요 원인이 된다. 

이를 보정하기 위해 본 논문에서는 사용자가 스마트폰을 손에 

쥔 채 8자 모양으로 회전시키며 다양한 방향에서 데이터를 

수집하였다. 이후 서버 측에서 타원체 맞춤(Ellipsoid Fitting) 



알고리즘을 적용하여 분포를 정규화하였고, 그 결과 동일한 

위치에서 방향에 관계없이 안정적인 자기장 값을 확보하였다. 이 

과정을 통해 모델 학습 시 불필요한 노이즈가 제거되었으며, 

실제 환경에서도 신뢰할 수 있는 측위 성능을 확보할 수 있었다. 

 

2.3 보행자 추측항법(PDR) 적용 

지자계 Fingerprinting은 정적인 위치 식별에는 효과적이지만, 

긴 복도와 같이 유사한 패턴이 반복되는 환경에서는 혼동이 

발생할 수 있으며, 사용자의 연속적인 이동 궤적을 반영하기 

어렵다. 이러한 한계를 극복하기 위해 본 논문에서는 보행자 

추측항법 (Pedestrian Dead Reckoning, PDR)을 결합하였다. 

PDR은 가속도계와 자이로스코프 데이터를 활용하여 보행자의 

걸음 수, 보폭, 이동 방향을 계산하고 이를 누적해 이동 경로를 

추정하는 방식이다.[4] 먼저 가속도 신호의 진폭 변화를 

분석하여 걸음을 검출하였고, 일정한 peak와 trough 패턴이 

반복적으로 나타날 때 이를 하나의 걸음으로 판정하였다. 걸음이 

검출되면 Weinberg 경험식을 적용하여 보폭을 추정하였다. 

이어서 자이로스코프와 자기장 센서 데이터를 함께 활용하여 

이동 방향을 계산하였다. 

초기 위치는 MLP가 제공하는 좌표를 기준으로 설정하였으며, 

이후 위치는 걸음 수에 따른 보폭과 이동 방향을 순차적으로 

누적하여 갱신되었다. 이 과정을 통해 단순히 지자계 

패턴만으로는 얻을 수 없었던 연속적인 이동 궤적을 추적할 수 

있었으며, 결과적으로 실제 보행 경로와 유사한 결과를 재현할 

수 있었다. 특히 PDR은 지자계 기반 측위에서 발생할 수 있는 

불연속적 출력 문제를 완화해, 보다 자연스럽고 신뢰성 있는 

경로 추정을 가능하게 하였다. 

 

2.4 성능평가 및 어플리케이션 구현 

본 논문에서는 MLP 기반 분류 모델을 적용하여 지자계 

Fingerprinting 데이터를 학습하였다. 그 결과, 별도의 보정을 

하지 않은 경우 위치 분류 정확도는 약 70% 수준에 머물렀다. 

그러나 그림 2에서와 같이 Hard-iron 및 Soft-iron 보정을 통해 

센서 왜곡을 제거한 뒤에는 정확도가 약 97%까지 향상되었다. 

이는 센서 보정 과정이 모델의 안정성과 신뢰도를 높이는 핵심 

요소임을 보여주며, 실제 환경에서도 일관된 측위 성능을 확보할 

수 있음을 입증한다. 

제안한 기법은 실제 애플리케이션 형태로 구현하여 동작을 

검증하였다. 애플리케이션은 사용자가 위치한 지점을 지도 상에 

마커로 표시하고, 스마트폰의 heading 센서를 활용해 현재 

방위를 함께 나타낸다. 사용자가 이동할 경우에는 PDR 

알고리즘을 통해 걸음 수, 보폭, 방향을 누적하여 실시간으로 

위치를 추적한다. 구현 과정에서 스마트폰은 자기장(x, y, z) 값과 

오일러 각(Euler angles: roll, pitch, yaw)을 서버로 전송하면, 

서버는 이를 학습된 모델에 입력하여 사용자의 위치가 1번부터 

29번 지점 중 어디에 해당하는지를 판별하고 그 결과를 다시 

스마트폰으로 전달한다. 스마트폰은 이 응답을 바탕으로 지도 

상의 현재 위치를 갱신하며, 이동 시에도 연속적인 경로가 

실시간으로 추적된다. 

 
그림 2. Hard-iron 및 Soft-iron 보정 전 후의 정확도 차이 

 
그림 3 애플리케이션 실행 화면 

 

애플리케이션의 실제 동작 화면은 [1]에서 확인할 수 있으며, 

이를 통해 제안한 기법이 단순한 실험 수준을 넘어 실제 사용자 

환경에서도 서비스 가능한 형태로 구현될 수 있음을 입증하였다. 

 

Ⅲ. 결론  

본 논문은 GPS가 작동하지 않는 실내 환경에서 지자계 

기반의 실내 측위 기법을 제안하였다. 지자계 Fingerprinting, 

MLP 기반 학습, 센서 보정, PDR 결합을 통해 정적 위치 정확도 

90% 이상, 평균 위치 오차 0.9m에서 2m의 성능을 달성하였다. 

향후 연구에서는 제안 기법을 실내 내비게이션, 재난 대응, 

위치 기반 서비스 등 다양한 응용 분야에 적용함과 동시에, 

다층구조 환경에서도 활용 가능한 모델로 확장할 계획이다. 또한 

다양한 스마트폰 기종과 센서 특성을 반영한 디바이스 독립형 

학습 구조를 구축하고, GPS 기반 실외 측위와의 융합을 통해 

실내·외를 아우르는 통합 측위 시스템으로 발전시킬 예정이다. 
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