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요 약

세대를 거듭하며 무선 통신 환경이 복잡해짐에 따라 다양한 조건에서 채널 추정의 정확도 확보가 중요한 과제로 남아있다. 기존의 딥러닝 기반 채널
추정 기법은 전통적인 방법에 비해 높은 성능을 보이나, 학습되지 않은 환경이나 급격히 변화하는 채널 조건에서는 성능이 저하되는 한계를 가진다.
본 논문에서는 이러한 한계점을 극복할 방안으로 확산 모델을 적용한 최근 채널 추정 연구들을 소개하고, 해당 접근법의 특징과 한계점을 살펴본다.

Ⅰ. 서론

채널 추정은 통신 시스템의 성능을 결정하는 핵심 요소로써, 수십 년간

지속해서 연구가 이루어지고 있다[1]. 과거에 고안된 LS(Least Squares),

MMSE(Minimum Mean Square Error) 기법부터 최근딥 러닝을 적용한

채널 추정 기법까지 다양한 채널 추정 기법이 제안되었다[2],[3].

전통적 채널추정기법중하나인 LS 기법은 수신된 신호와 파일럿 신호

간의 오차를 직접 비교하여 채널을 추정하는 방식으로, 채널의 통계를 알

지 못하는 상황에서도 사용될 수 있으나 복잡한 채널에서 성능이 떨어진

다. 이에 반해, MMSE 기법은 LS 추정치를 기반으로 채널의 자기 상관

(auto correlation) 행렬과 잡음을 이용한보정을통해 채널을추정하는기

법으로 보정을 통해 LS 기법보다 더 높은 성능을 보이지만, 채널의 자기

상관 행렬과 잡음에 대한 정보가 있어야 한다는 한계를 가진다[4].

이러한 전통적 채널 추정 방법들의 한계를 극복하기 위해, 최근 딥 러닝

을 적용한 채널 추정 기법들이 제안되었다[5]. 하지만, 다양한 딥 러닝 기

반 채널 추정 기법들은 기존 기법 대비 높은 성능을 달성하지만, 특정 환

경 조건을바탕으로 채널실현값을학습하기때문에 환경이변화하면채

널 추정 모델을재학습해야 하며 학습한적 없는 환경에서는성능이 하락

한다는 한계를 가진다. 이를 극복하기 위해, 최근 이미지 생성 분야에서

높은성능을보인확산모델을이용한채널추정연구가많은관심을받고

있다. 본 논문에서는 확산 모델의 구조 및 동작을 간략히 설명하고 확산

모델을 사용한 채널 추정의 최신 연구 동향을 살펴본다.

Ⅱ. 확산 모델의 구조 및 동작 개요

확산 모델은 전방 확산 과정과 역과정으로 구성되며, 전방 확산 과정은

원본 데이터가 백색잡음에 가까워질 때까지 잡음을 단계적으로 주입하는

과정으로 다음 식으로 표현된다.

      I        (1)
여기서 는 잡음이 추가되지 않은 원본 데이터, 는 잡음이 회 추가된
데이터를 나타나며,   은 평균이 이고 분산이 인 가우시안 잡
음, 와    

 는각각 시점에서 원본 데이터를보존할 비율을 결정
하는 계수와 초기 데이터의 잔존 비율, ∼ I는 단계별로 추가되는

가우시안 잡음을 나타낸다.

샘플링(Sampling)으로도 불리는 역과정은 잡음이 섞인 데이터 를 시
점으로 하여 신경망으로 예측한 잡음을 단계별로 제거하며 →로 이
동한다.  ∙를 파라미터 를 사용하는 잡음 예측 네트워크라고 할 때

역과정은 다음 수식으로 표현된다.

   
 

 
    (2)

여기서   로 각 단계에서 주입되는 잡음의 분산을 나타내고, 와
는 각각 역과정에서 수렴을 위해 추가하는 가우시안 잡음과 그 표준편

차를 나타낸다. 역과정에서 단계별로 추가된 잡음을 예측하도록 학습한

모델은결국원본이미지의분포를학습하게된다. 따라서완전한잡음이

미지에서 단계적으로 잡음을 제거하며 학습한 이미지들의 분포로 수렴하

여 학습한 적 없는 고품질 이미지를 생성할 수 있게 된다.

다음 장에서 확산 모델을 활용한 채널 추정에 관한 최신 연구 결과들을

소개한다. 표 1은 본 논문에서소개하는연구결과의주요내용과확산모

델 유형, 잡음 예측 신경망 구조를 비교한 결과표이다.

시나리오
논문

번호
주요 내용

확산 모델

유형

잡음 예측

신경망 구조

massive

MIMO

[6]
환경 변화에 대한 확산 모델의

강인성 확인

Score-

based
RefineNET

[8]
각도 영역 변환을 통한 추론

속도 향상
DDIM CNN

[9]
저해상도 ADC에서성능향상 및

불완전 데이터 기반 학습

RIS [7]
점진적 지식 증류를 통한 추론

속도 향상
DDPM U-NET

표 1. 확산 모델 기반 채널 추정 연구

Ⅲ. 확산 모델 기반 채널 추정 연구[6]-[9]

참고문헌 [6]에서 확산 모델 기반 채널 추정 연구가 최초로 제안되었다.

MIMO(Multiple Input Multiple Output) 환경에서채널정보를 더정확하

고강건하게추정하기위해, 확산 모델의일종인확률분포의기울기인스

코어(score) 기반 모델을 채널의 통계적 특성을 학습하는 확률적 사전분

포(probabilistic prior) 생성기로 활용하였다. 추정 시에는 이 사전 분포

(prior)에 수신된파일럿 신호정보를 통해얻은우도(likelihood)를 결합하



여 사후 샘플링(posterior sampling)을 통해 채널을 추정한다. 모델의 성

능을 검증하기 위해 훈련 환경과 테스트 환경을 의도적으로 다르게 설정

하는 분포 불일치(out-of-distribution) 상황에서, 다른 딥러닝 기법들이

성능저하를보이는것과달리확산모델기반채널추정은이상적인채널

을 알고 있을 때와 거의 유사한 BER(Bit Error Rate)을 달성하였다. 이를

통해 확산 모델의 환경 변화에 대한 뛰어난 강건성을 입증하였다. 또한,

모델 크기의수정을통해 ×크기의채널에서추론지연 시간을 1.5초

수준으로 줄여 이동성이 낮은 시나리오에서 확산 모델의 실용성을 보였

다. 저자는이러한잠재력을가진확산모델은저해상도수신기의채널추

정성능개선, 간섭시나리오에서오류플로어(error floor) 극복등의분야

에도 활용될 수 있어, 추가 연구가 필요함을 밝혔다.

참고문헌 [7]은 확산 모델의 높은 계산 비용 문제를 개선하면서 기존

MIMO 환경보다 더 복잡한 RIS(Reconfigurable Intelligent Surface) 환

경에 적용한 연구이다. 해당 연구에서는 RIS 환경을 극복하기 위해 기존

수신단 잡음뿐만 아니라 RIS 하드웨어 자체에서 발생하는 위상 잡음

(phase noise)까지 완화하기 위해 기존 사후 샘플링 과정에 RIS 위상에

대한 경사하강법(gradient descent)을 통합하여위상잡음의 영향을 줄이

는 방식을 제안했다. 또한, 기존 연구의 한계로지적된 높은 추론 비용문

제를해결하기 위해점진적증류(progressive distillation)를 도입했다. 이

기법으로 1024회의 샘플링 단계를 요구하는 기존 모델의 지식을 절반의

샘플링단계를 가진모델로증류하는과정을 반복하여최종적으로 32회의

샘플링 단계를 갖는 모델로 만들어 추론속도를 크게 향상하면서 성능저

하를 1dB 이내로최소화했다. 그결과, 제안된모델은 기존 RIS 환경에서

채널 추정 기법들대비 3.2dB 이상의 NMSE 향상을 보였으며, 위상 잡음

을 고려하지 않았을 때보다 최대 3.74dB 더 나은 성능을 달성하여 확산

모델의 적용 범위를 확장하고 실용성을 높였다.

참고문헌 [8]은 확산 모델의복잡도와메모리문제를다루면서실제통신

환경에 적용 가능한 낮은복잡도를 가진채널추정기 설계를제안한 연구

이다. 복잡도 문제를 해소하기 위해 기존에 시간-주파수 차원의 채널 데

이터를 푸리에 변환을 통해 희소(sparse)한 특성을 보이는 각도 영역

(angular domain)으로 변환한 뒤 분포를 학습하였다. 이를 통해 [5]를 포

함한기존연구에서사용한수백만개의파라미터를약 5만 5천개수준으

로 줄인 경량 CNN(Convolutional Neural Network) 잡음 예측 모델구조

를 구현하였다. 또한, 일정한 단계의 추론 과정을 거쳐야 하는 기존 확산

모델의 효율성을 개선하기 위해 관측된 신호의 SNR(Signal to Noise

Ratio)에 해당하는 확산 단계에서부터 샘플링을 시작하는 방식을 채택했

다. 이에 따라 SNR이 높을수록 더 적은 수의 추론 단계만 거치도록 하여

추가적인 추정 지연 시간 단축을 이루었다. 그 결과, 훨씬 적은 메모리와

계산량에도 불구하고 동일한 조건에서 참고문헌 [5]에서 제안한 스코어

기반 모델 대비 최대 5dB 더 우수한 추정 성능을 보였으며, SNR 정보가

부정확한 상황에서도 강건함을 유지하는 결과를 보여 확산 모델 기반 채

널 추정의 실용화 가능성을 높였다.

참고문헌 [9]는 참고문헌 [6]에서 추가 연구가 필요한 부분으로 밝힌 확

산 모델을 통한 저해상도 ADC(Analog to Digital Converter)의 성능 개

선과 다수의 깨끗한 훈련 데이터 확보의 어려움을 극복하는 방식을 제안

한 연구이다. 저해상도 ADC에서의 성능 저하를 해결하기 위해 저해상도

로 왜곡된 측정치에 맞춰 사후 샘플링(posterior sampling) 과정의 우도

(likelihood) 항을 수정함으로써 비선형 왜곡의 영향을 보상했다. 또한, 다

수의깨끗한 채널데이터를현실적으로확보하기 어려운문제를해결하기

위해 SURE(Stein's Unbiased Risk Estimator)를 사용하여 잡음이 섞인

데이터만으로도확산 모델이실제채널의통계적 분포를효과적으로학습

할수있게하였다. 그 결과, 제안된모델은전통적기법과딥러닝기반의

기존 기법보다 추론 지연 시간을최대 10배 단축하고 파일럿 밀도를 줄였

을때도 강인한 성능을 보여 모든 부반송파에 파일럿 신호를 보내는 것이

힘든 고차원 채널에서 확산 모델 활용의 장점을 보였다.

Ⅳ. 결론

앞서 소개한 연구 결과들은 확산 모델 기반채널 추정이 기존 방식 대비

환경 변화에 강인한 성능을 가짐을 보였다. 세대를 거듭하며 복잡해지는

무선 통신 환경에서 이러한 특징은 장점이 될 수 있으며, 추가 연구를 통

해채널 추정에 필요한 시간을 단축할 수있다면 고이동성 시나리오를 포

함한 다양한 무선 통신 환경 채널 추정에 사용 가능하다.
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