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요 약

본 논문은 6G 이동통신에서 요구되는 초고속 및 초연결 환경을 지원하기 위해 고고도 플랫폼과 셀프리 네트워크를 통합한 구조를 제안한다. 기존의
셀프리 시스템은 높은 데이터율을 제공하지만, 모든 AP가 모든 사용자를 동시에 지원함으로써과도한 백홀 오버헤드와 에너지 낭비를 초래한다. 이를
해결하기위해 본연구는사용자중심 클러스터링과고고도플랫폼협력을통해 에너지효율을최적화한다. 이를 위해본논문에서는강화학습을 통해서
해당 문제를 해결하였다.

Ⅰ. 서 론

차세대 6G 이동통신은초광대역, 초저지연, 초고밀도연결성을요구하며,

이를 달성하기 위한 핵심 기술 중 하나가 셀프리 (Cell-Free) 네트워크이

다. 셀프리네트워크 는다수의 분산 액세스 포인트(AP)가 협력적으로 모

든 사용자에게 데이터를 송신하여, 전통적인 셀 기반 네트워크의 경계 문

제와 핸드오버 한계를 해소한다. 이러한 특성으로 높은 신호대잡음비

(SINR)와 안정적인 연결성을 제공할수 있다. 그러나전통적셀프리 시스

템은모든 AP가 모든사용자에게신호를송신함으로써불필요한전송, 백

홀 트래픽, 에너지 낭비 등의 문제가 발생한다. 이를 개선하기 위해 사용

자 중심 클러스터링(User-Centric Clustering) 방식이 도입되었다. [1]은

각 사용자가 자신에게 가장 강한 AP 하위 집합만을 선택하는 구조를 제

안하여스펙트럼효율과전력효율을동시에개선하였다. [2]는 분산자원

할당 알고리즘을 통해 사용자 스케줄링, 빔포밍, 전력 제어를 최적화하였

다. 또한 [3], [4] 등은 강화학습(Reinforcement Learning, RL) 기반 접근

을 통해 클러스터링과 전력 제어를 동시에 수행하는 기법을 제안하였으

며, 특히 다중 에이전트 강화학습(MARL)을 통해 분산형 클러스터링이

가능함을 보였다.

한편, 고고도 플랫폼(HAPS) 통신은 성층권(고도 약 20 km)에 체공하는

무인항공기·비행선 등을이용하여 지상네트워크의 한계를보완하는차세

대 인프라로 주목받고 있다. HAPS는 넓은 커버리지, 낮은 간섭, 빠른 배

치가 가능하다는 장점이 있으며, 산악·도서·해양 지역 등 지상 인프라가

부족한 환경에서도 QoS를 보장할 수 있다. [5], [6] 등은 UAV/HAPS를

셀프리 시스템에통합하여스펙트럼효율및 전력 소비를 개선하였고, [7]

은 HAPS-BS 협력 네트워크에서 비용 인지형 최적화를 수행하였다.

그러나 기존연구 대부분은클러스터 크기를 고정하거나, 이동성을 고려

하지 않은 정적 환경을 가정하고 있어, 현실적인 이동 사용자 환경에서의

효율적 자원 관리에는 한계가 있다. 본 연구는 이러한 문제의식을 바탕으

로이동사용자환경에서동적으로 클러스터를재구성하고 HAPS 협력을

포함하는 통합 자원 관리 알고리즘을 제안한다.

Ⅱ. 본론

본 연구에서 제안하는 시스템은지상 액세스 포인트(AP)들과 고고도 플

랫폼(HAPS), 그리고 사용자 집합으로 구성된다. 각 사용자는 단일 안테

나를가지고 있으며, AP와 HAPS는 다중 안테나를탑재하여 효율적인빔

포밍을수행한다. 모든 AP는 중앙처리장치(CPU)와 광섬유 기반의프론

트홀로 연결되어 있으며, 사용자는 동시에 여러 개의 AP로부터 데이터를

수신할 수 있다. HAPS는 약 20km 성층권 상공에 위치하여 지상에서 신

호세기가낮은 사용자들을보조함으로써전체네트워크의 커버리지와품

질을 향상시킨다. 이러한 구조는 사용자 중심의 셀프리 네트워크 개념을

확장한 형태로, 사용자 위치와 채널 상태에 따라 클러스터 구성을 유연하

게 조정할 수 있다.

본 연구에서는에너지 효율성을최대화하는 것을목표로 한다. 한편으로

는단위전력당데이터전송률을높이는것을목표로하고, 다른 한편으로

는 클러스터 변경이나 HAPS 재할당으로 인한 제어 신호 교환량으로 발

생하는 에너지 손시을 최소화하도록 설계되었다. 특히, 이동성이 높은 사

용자의 경우 클러스터 구성 변화가 빈번하게 발생하므로, 효율적인 클러

스터 재구성이 전체 네트워크 성능에 결정적인 영향을 미친다. 이러한 문

제는 비선형적이고 비볼록적인 성격을 지니며, 전통적인 수학적 최적화

방법으로는 실시간 해를 구하기 어렵다. 따라서 본 논문에서는 최근 각광

받고 있는 강화학습으로 문제를 해결하였다.

DDPG(Deep Deterministic Policy Gradient) 에이전트가 전체 네트워크

상태를 수집하여 각 사용자가 연결될 AP 클러스터와 HAPS를 결정한다.



중앙 에이전트는 지상 채널과 공중 채널의 정보를 동시에 고려하며, 사용

자의이동성이나 위치변화에따라클러스터 구성을지속적으로업데이트

한다. 이를 통해 사용자의 품질요구(Quality of Service, QoS)를 만족시키

면서도 불필요한 에너지 낭비를 최소화할 수 있다. 중앙 에이전트의 학습

과정은 마르코프 결정 과정(MDP)으로 모델링되며, 상태는 채널 상태를

포함하고, 행동은 클러스터링으로 정의된다. 보상은 에너지 효율성을 기

반으로 한다.

다음으로, 각 AP와 HAPS가 독립적인 멀티에이전트로 동작하여 빔포밍

벡터를 결정한다. 각 에이전트는 자신이 담당하는 링크의 채널 상태를 관

찰하고, 그에 적합한빔포밍방향과전력분배를결정한다. 모든 에이전트

는 개별적으로 행동하지만, 보상은 전체 네트워크의 전력 제약과 데이터

율을 종합적으로 반영한 전역 보상을 공유한다. 이러한 협력적 학습 구조

는분산된환경에서도일관된성능개선을보장하며, 각노드가국소적정

보를기반으로 전체 효율성 향상에기여 하도록유도한다. 특히, HAPS는

고도에서광범위한시야를확보하고 있기때문에, 지상 AP와의 협력빔포

밍을 통해 에지 사용자의 신호 품질을 크게 향상시킬 수 있다.

학습 절차는 다음과 같이 이루어진다. 먼저 중앙 에이전트가 네트워크

상태를 평가하여 사용자별 클러스터링과 HAPS 연결을 결정한다. 이어서

각 AP 및 HAPS 에이전트가 이 결과를 바탕으로 자신의 빔포밍 벡터를

계산한다. 모든 에이전트는 주어진 시간 슬롯에서 얻은 보상 값을 이용해

네트워크상태를갱신하며, 경험 재현 버퍼를 통해학습을반복한다. 이를

통해 에이전트들은 불안정한 정책 갱신을 방지하고, 이동 사용자 환경에

서도 빠르고 안정적으로 적응할 수 있도록 설계되었다.

그림 1 평균 유틸리티 성능

시뮬레이션 환경은 1 km × 1 km 영역 내에 16개의 AP, 4개의 HAPS,

그리고 8명의 사용자가 존재하는 설정으로 구성되었다. 사용자 이동은

Manhattan 모델을 따르며, 평균 속도는 1 m/s와 10 m/s의 두 가지 경우

를비교하였다. 결과적으로 제안된 HDDPG 기반 알고리즘은기존의 셀프

리 방식(GCF)에 비해 전반적으로 우수한 성능을 보였다. 저속 이동 환경

에서는 평균 효율이 127.37% 향상되었다. 학습 과정에서는 약 3,000회 이

상의 에피소드 이후 안정적인 수렴을 보여, 학습 기반 접근이 실제 동적

네트워크 환경에서도 실용적임을 확인하였다.

Ⅲ. 결론

본 논문은 HAPS를 결합한 Cell-Free Massive MIMO 네트워크에서 에

너지 효율과 클러스터링오버헤드를 동시에 최적화하기 위해 HDDPG 기

반 계층적 자원 관리 알고리즘을 제안하였다. 강화학습을 통해 이동성과

비선형 제약을 동시에처리하며, 시뮬레이션을 통해 기존 GCF 대비 현저

한성능향상을입증하였다. 향후연구에서는불완전채널상태정보(CSI)

환경, 위성-HAPS-지상 통합 네트워크, 및 지능형 반사표면(IRS)을 포함

한확장모델을 고려하여보다 현실적인 6G 시나리오에적용할 예정이다.
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