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요 약  

 
본 논문에서는 다중사용자 다중안테나 하향링크 시스템에서 기지국이 복수의 유체 안테나를 탑재한 시스템을 고려한다. 

유체 안테나 시스템에서는 안테나의 위치를 실시간으로 조정하여 통신 성능을 극대화 할 수 있다. 그러나 안테나 위치와 

빔포밍 벡터를 동시에 최적화하는 고난도의 송신단 신호처리 방식이 필요하다. 이를 위해 안테나 위치와 빔포밍 벡터를 

순차적으로 최적화하는 two-stage graph neural network 방법을 제안한다. 모의실험을 통해 기존 기법 대비 제안하는 

기법의 성능 이득을 검증한다. 

 

Ⅰ. 서 론  

최근 유동성이 높은 금속 유체를 기반으로 하는 유체 

안테나 시스템 (FAS: Fluid Antenna System)연구가 

활발히 진행중이다[1]. 전파환경에 맞추어 안테나 

위치를 순시적으로 조정함으로써 채널의 상태를 
최적화할 수 있다. 이를 통해 종래의 고정형 안테나 대비 

더 높은 전송속도 성능 달성이 가능하다.  

본 논문에서는 다중사용자 유체 안테나 시스템에서 

안테나 위치와 빔포밍 벡터를 동시에 최적화하는 graph 

neural network (GNN) 기법을 제안한다. 고정형 안테나 
시스템에서 GNN 기반의 빔포밍 최적화 방식은 과거에 

연구된 바 있으나[2], 유체 안테나 시스템에서 활용된 

바는 많지 않다. 기존 연구 [1]에서도 유체 안테나 

시스템을 위한 GNN 모델이 고안되었으나, 간단한 
빔포밍 구조만을 고려하여 성능 열화가 존재한다. 

본 논문에서는 uplink-downlink duality에 기반한 최적 

빔포밍 벡터 구조[3]을 활용하여 유체 안테나 시스템에 

적합한 two-stage GNN 기술을 제안한다. 모의실험을 

통해 제안하는 GNN 기법이 기존 기법[1] 대비 
전송속도 성능을 크게 개선함을 확인한다. 

 

Ⅱ. 시스템 모델  

기지국이 𝑁  개의 유체 안테나를 활용하여 𝐾  개의 

단일 안테나 사용자에게 하향링크 통신 서비스를 
제공한다. 기지국의 유체 안테나는 길이가 𝐷 인 linear 

array 구조를 갖는다. 기지국은 안테나의 위치를 

최적화하여 데이터 전송속도를 극대화 한다. 안테나 𝑛 

	(𝑛	 ∈ 	𝒩	 ≜ {1, . . . , 𝑁}) 의 위치 𝑥! 은 제한조건 0	 < 𝑥" <
	𝑥# <	. . . < 𝑥$ 	≤ 𝐷	 을 만족하도록 설계한다. 기지국과 
사용자 𝑘	(𝑘	 ∈ 	𝒦	 ≜ {1, . . . , 𝐾})사이의 각도를 𝜃% 	 ∈ [0, 𝜋]로 

정의하면, 채널 벡터는 다음과 같이 표현된다. 	
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이때 𝒙	 ≜ [𝑥", 𝑥#, . . . , 𝑥$]0 , 𝜆는 파장을 의미한다. 사용자 

𝑘의 빔포밍 벡터를 𝒘% 	 ∈ 	ℂ$  로 정의하면, signal-to-
noise-plus-interference ratio (SINR)은 아래와 같다. 
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이때 𝑾 = {𝒘", … ,𝒘5}이고 	𝑑%와 𝜎%#는 각각 경로 손실과 
잡음 전력을 의미한다. Sum rate 을 최대화하는 문제를 

공식화하면 다음과 같다. 
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𝑃<=)는 기지국의 최대 송신 전력, ∆는 안테나간 최소 

거리 제한을 뜻한다. 비볼록 (nonconvex) 특성 때문에 

문제 (3)의 최적 솔루션을 계산하는 것은 매우 어렵다.  

Ⅲ. 제안하는 Two-Stage GNN 방법 

 
그림 1. 제안하는 two-stage GNN 구조 



 
  문제 (3)를 효과적으로 해결하기 위해 two-stage GNN 

기법을 제안한다. 그림 1 과 같이 제안하는 인공지능 

모델은 안테나 위치 최적화 단계와 빔포밍 최적화 
단계로 구성된다. 안테나 위치 최적화를 위해 제한조건 

(3c) 를 다음과 같이 변형한다 [1]. 
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여기서 {𝜉&}와 𝜉<=) 는 양수인 최적화 변수이다. 안테나 

위치 최적화 단계에서 GNN 은 사용자 각도 정보 {𝜃&}를 

입력으로 활용하여 {𝜉&}와 𝜉<=) 를 출력하고, (4), (5)을 
기반으로 안테나 위치 변수 𝒙 를 복원한다. 다음으로, 

빔포밍 최적화 단계에서는 최적화된 안테나 위치를 

기반으로 결정된 채널 벡터 𝒉(𝒙, 𝜃%) 를 입력받아 

빔포밍을 구성하는 매개변수를 도출한다. 기존 연구 

[1]에서는 maximum ration transmission (MRT) 와 
zero-forcing (ZF) 빔포밍을 가중치 𝛼%로 선형결합하여 

아래와 같이 빔포밍 벡터를 도출한다.  
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따라서 빔포밍 최적화 단계의 출력은 가중치 𝛼% 와 

송신전력 𝑝% 로 설계한다. 그러나 상기 빔포밍 구조는 
최적성을 보장하지 않는다. 

본 논문에서는 최적 빔 구조[3]를 활용하여 아래와 

같이 빔포밍 벡터를 재구성한다. 
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이때 사용자 𝑘 의 출력은 2 차원 빔 특성 벡터 [𝑝% , 𝑞%]0	 
로 주어진다. 

 
그림 2. 안테나 위치 및 빔포밍 최적화 GNN 구조 

 
  각 단계의 GNN 구조를 그림 2 에 도시하였다. 안테나 

위치 최적화 단계의 GNN 은 𝑁  개의 안테나 노드들이 
가상의 노드에 연결된 star 그래프로 나타낸다. 안테나 

노드의 입력 특성을 𝜃%로, 가상의 노드는 더미 특성 0 을 

입력으로 하여 복수의 graph attention network (GAT) 

layer 로 처리한다. 마지막 GAT layer 의 출력을 multi-
layer perceptron (MLP)로 처리하여 최종 안테나 위치 

변수를 출력한다. 다음으로, 빔포밍 최적화 GNN 은 𝐾 개 

단말 노드가 모두 연결된 complete 그래프를 처리한다. 

각 노드의 입력 특성으로 채널 벡터 𝒉(𝒙, 𝜃%)를 사용한다.    

마찬가지로 복수의 GAT layer 및 MLP 로 최종 빔 특성 

벡터들을 출력한다. 제안하는 two-stage GNN 은 sum 

rate 성능을 최대화하도록 훈련한다. 

IV. 모의실험 결과  

표 1. Sum rate 성능 비교 [bps/Hz] 
𝐾 Proposed Conventional [1] 

2 15.40 14.03 

3 19.56 18.87 

4 22.22 21.51 

5 23.09 21.76 

6 22.48 18.49 

 

제안하는 기법의 우수성을 입증하기 위해 모의실험 
결과를 제시한다. 잡음 전력은 𝜎%# = 1	W , 최대 송신 

전력은 𝑃<=) = 100	W , 파장은 𝜆 = 0.167	m , 안테나간 

최소 거리는 Δ = 𝜆/2  그리고 기지국 안테나단 길이는 

𝐷 = 10𝜆로 설정한다. 배치 크기는 1024, 학습률은 2 ×
10>D인 Adam 알고리즘으로 고정된 환경 𝑁 = 𝐾 = 6에서	
훈련을	 진행한다.	 일반화	 능력	 검증을	 위해	 테스트는	
다양한	 𝐾에	 대해	 수행한다.	
  표 1 은 제안 기법과 기존 기법[1]의 sum rate 성능을 

다양한 사용자 수에 대해 비교한다 제안하는 기법은 
최적 빔포밍 구조 (7)을 활용하여 더 높은 sum rate 

성능을 달성한다. 이에 비해 기존 기법은 단순한 MRT-

ZF 선형결합 방식을 채택하여 최적성을 잃고, 이에 따라 

sum rate 성능이 저하된다. 

V. 결론 

  본 논문에서는 유체 안테나 시스템의 성능을 극대화 

하기 위해 안테나 위치와 빔포밍 벡터를 동시에 

최적화하는 GNN 구조를 제안하였다. 종래 기법의 

단점을 해결하기 위해 최적 빔포밍 구조를 차용하여 
GNN 을 재구성하였다. 모의실험을 통해 제안하는 기법의 

성능 이득을 확인하였다. 
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