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요 약

로보틱스와 같이 복잡한 고차원 문제를 다루는 환경에서 오프 폴리시 기반 심층 강화학습 알고리즘은 실제 환경에서 궤적 데이터를 확보하는
데에높은 시간적, 경제적 비용이 수반되는한계가있다. 따라서본 논문은 대형 언어 모델을 통해알고리즘의 학습에 필요한 환경 동역학 궤적
을 예측하는 방법을 제안한다. 제안하는 방법은 상태 내 구성 요소의 중요도를 반영하는 가중치 행렬을 사용하여 LLM이 보상함수를 모르는
상태에서도 환경 동역학을 예측하여 샘플을 생성한다. Walker2d-v4 환경에서의 실험을 통해 제안 방법이 기존 샘플 생성 방법과 유사한 평균
성능을 가지며 더 빠른 초기 성능 향상을 달성하는 것을 확인하였다.

Ⅰ. 서론​

강화학습(Reinforcement Learning, RL)은 에이전트(agent)가 환경과의

상호작용을 통해 최적의 행동 폴리시(policy)을 학습함으로써 순차적 의

사결정 문제를 해결하는 방법으로, 자율주행, 로보틱스 등 다양한 분야에

서 널리활용되어 왔다. 특히, 로보틱스에서는 복잡한 고차원 문제를 해결

해야 하므로 심층 신경망을 사용하는 심층 강화학습(Deep Reinforcement

Learning, DRL)을 활용한 연구가 활발히 진행되어 왔다. 하지만, 오프 폴

리시(off-policy) 기반 DRL 알고리즘의 경우, 학습에 필요한충분한 궤적

(trajectory) 데이터를 확보해야 하며, 실제 환경에서의 상호작용에는 높

은 시간적, 경제적 비용이 수반되는 한계가 있다 [1].

최근 이러한 한계를 극복하기 위해 대형 언어 모델(Large Language

Model, LLM)을 DRL의 보조 학습 모델로 활용하는 시도가 진행되고 있

다 [2]. LLM은 방대한 사전지식과 문맥 이해 능력을 바탕으로 환경의 동

역학(dynamics)을 예측하거나 시뮬레이션할 수 있으므로 [3], DRL에서

에이전트와 실제 환경과의 상호작용 없이 LLM을 통하여 실제 환경의 동

역학에 따른 상태(state) 데이터를 생성할 수 있다.

본 연구에서는 LLM을 통해오프폴리시 기반 DRL 알고리즘의학습에

필요한환경 동역학 궤적을 예측하는방법을제안한다. 특히, 제안하는방

법은 에이전트의 행동 폴리시 학습 과정에 상태가 미치는 영향력을 반영

하기 위한가중 행렬을 정의함으로써, LLM이 에이전트의 보상함수를직

접 알지 않아도 이를 반영한 환경의 동역학을 예측할 수 있다.

Walker2d-v4 환경에서의 실험을 통해 제안한 방법이 적은 실제 환경 샘

플을 사용하며 향상된 학습 속도로 최적의 행동 폴리시를 학습하는 것을

확인하였다.

Ⅱ. 본론

2-1. 문제 정의

본연구는이족보행로봇시뮬레이션을위한환경에서에이전트가넘어

지지않고빠르게전진하는것을목표로한다. 에이전트는몸통과두다리

로 구성되며, 양쪽의 발목, 무릎, 허벅지에 총 6개 관절이 있다. 환경은 마

르코프 결정 과정(Markov Decision Process, MDP)의 구성 요소인       로표현될 수있다. 여기에서 는 감가율(discount
factor)을 의미하며, 상태 공간(state space)  , 행동 공간(action space) , 상태 전이함수  , 보상 함수(reward function) 은다음과 같이정
의된다.

상태 공간(State Space) 상태  ∈⊂ℝ는 시간 에서 에이전
트의 높이, 관절 각도, 선속도 및 각속도로 구성된 17차원 실수 벡터로 정

의된다. 에이전트의 높이를  , 몸통 각도를  , 양쪽 다리의 6개 관절각

도를   , 에이전트의 수평 및 수직 속도를  ,  , 몸통의 각속도를
 ,

각 관절의 각속도를  라 하면, 상태  는 다음과 같이 표현할 수 있다.

     
⊤ 


  

⊤
⊤

행동 공간(Action Space) 행동  ∈⊂ℝ은 시간 에서 에이전
트의 6개 관절에 축을 중심으로 인가되는 토크(torque) 제어로 정의한

다. 시간 에서 번째 관절의 토크를 
라고 하면, 각 토크의 범위는

  이 되고, 행동  은 다음과 같이 표현할 수 있다.     ⋯   ⊤  ∈  
시간 에서의 현재 상태  와 행동  을 기반으로 다음 상태    는
상태 전이 함수        에 의해 결정된다.

보상 함수(Reward Function) 보상 는 시간 에서상태  와 행동

 을 기반으로보상함수   ​  ​에 의해 결정된다. 에이전트는 안정
적인자세로넘어지지않고빠르게걷는것을목표로한다. 에이전트의직

립 보행 보상을 라 할 때, 는 다음과 같이 정의된다.



 ·∈ min max ∧∈ min max 
이때, 은 지시(indicator) 함수이며, 는 직립 보행의 가중치이다. ∧
는 논리 연산자 ‘AND’를 의미한다. 따라서, 와 는 각각 속도와 행
동 크기에 대한 가중치라 할 때, 보상 은 다음과 같이 정의할 수 있다.   ​ −∥ ∥
2-2. 제안 알고리즘

에이전트와 실제 환경의 상호작용을 통해 시간 까지 생성된 상태들의
집합을상태궤적       …  라하자. 상태  의구성요소들
의 중요도를반영하기 위한가중치행렬을라할 때, 는 다음과 같

이 정의할 수 있으며, diag… ,
diag는 대각 행렬을 의미하고      …은 상태의 구성
요소의 가중치를 나타낸다. 가 클수록 해당 상태 구성 요소에 높은 가
중치가 부여되므로, 에이전트의 학습에 영향 정도를 반영하여 가중치 행

렬 를 구성할 수 있다.

상태 궤적   내모든상태  에대해가중치행렬이곱해진형태의

가중 상태 궤적을  라 하면,  은 다음과 같이 표현된다.    … 
LLM은 가중 상태 궤적  을 입력으로 하여, 다음 상태   를 예측
한다. 즉, LLM의 상태 전이예측함수를 이라 하면 LLM이 예측한
다음 상태   는 다음과 같이 표현할 수 있다.      
LLM의 예측을통해출력된   는가중상태궤적  을기반으로예측
된 값이므로, 실제 환경에서의 행동과 보상을 기반으로 에이전트의 행동

폴리시를 학습하기 위해 가중 행렬 의 역행렬을 취해 예측된 상태를

복원한다. 복원된 상태를   라 하면,   는 다음과 같이 정의된다.        
본 연구에서는 에이전트의 최적의 행동 폴리시 학습에 영향을 미치는

상태구성 요소인  및 학습 종료에 직결된 상태 구성 요소인  , 에
해당하는      를 이 외의 가중치  ≠   보다
크게 구성된 가중 행렬 을 사용한다.

이를 통해, 제안하는 알고리즘은 에이전트의 보상함수를 직접 알지 못한

상태에서실제 환경과의상호작용이없이다음 상태를예측함으로써에이

전트의 행동 폴리시 학습에 필요한 샘플을 생성할 수 있다.

2-3. 실험 세팅 및 결과

본 실험에서는 이족보행로봇 시뮬레이터인Walker2d-v4 환경을 고려

하였다. 에이전트의 최적 행동 폴리시 학습 알고리즘으로 SAC (Soft

Actor-Critic)를 사용하였으며, 실제 환경 동역학을 예측하기 위한 LLM

으로는 Llama-3.2-1B을 사용하였다. 상태 궤적에 적용된 가중 행렬 
의 가중치를 다음과 같이 설정하였다.

   if    
모든실험은 5개의다른랜덤시드(seed)로 1,000,000 타임스텝동안 진행

하였다. 실험에서는 실제 환경 샘플만 사용하는 기존 방법과 제안하는 실

그림 1. 학습에 필요한 샘플의 출처에 따른 에이전트 학습 곡선

제 환경 샘플 및 LLM을 통한 예측 환경 샘플을 사용하는 방법에서 SAC

를 통한 학습 성능을 비교하였으며, 기존 방법은총 256개 샘플을, 제안하

는 방법은 256개의 샘플 중 5%는 LLM을 통한 예측 샘플을 사용하였다.

그림 1은 기존 방법과 제안 방법을 활용하였을 때, 에이전트의 학습 곡

선(learning curve)을 나타낸다. 제안 방법의 평균 성능과 기존방법의 평

균성능이유사하게수렴하는것으로부터, 제안 방법을통해적은실제환

경 샘플로도 에이전트가 최적의 행동 폴리시를 안정적으로 학습할 수 있

는것을확인할 수있다. 또한, 제안된방법이초기학습단계에서더빠른

성능 향상을 보이는 것을 통해 LLM이 에이전트의 보상함수를 직접적으

로 알지 않아도 가중 상태 궤적으로 행동 폴리시 학습에 영향을 미치는

환경 동역학을 예측하는 것을 확인할 수 있다.

Ⅲ. 결론

본 논문은 LLM을 활용하여 오프 폴리시 기반 DRL 알고리즘 학습에

필요한 환경 동역학 궤적을 예측하는 방법을 제안하였다. 제안 방법은 행

동 폴리시 학습에 상태가 미치는 영향력을 반영하는 가중 행렬을 통해,

LLM이 에이전트의 보상 함수를알지 못하더라도 최적 행동 폴리시 학습

에 유리하도록 실제 환경의 동역학을 예측할 수 있다. Walker2d-v4 환경

에서의실험결과, 제안 방법은기존의실제환경샘플만을사용하는방법

과유사한평균성능을달성함과동시에초기학습단계에서더빠른성능

향상을보였다. 이를 통해제안한방법이실제환경의샘플효율성을확보

하면서도 안정적으로 최적 행동 폴리시를 학습할 수 있음을 확인하였다.
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