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요 약  

 
본 연구에서는 실시간 위치 추정에 저궤도 위성을 선택하기 위해 가시 위성의 위치정보를 활용한 Set 

Transformer 기반 위성 선택 모델을 제안한다. 제안하는 Set Transformer 기반 위성 선택 모델과 다른 딥러닝 

기반 모델의 Geometric Dilution of Precision(GDOP) 성능을 분석한다. 제안하는 모델의 GDOP 성능이 훈련 

데이터 규모가 커질수록 Brute-force 방식에 근접하며 다른 딥러닝 모델보다 우수한 성능을 보인다.  

 

Ⅰ. 서론 

기존 위성 항법 시스템인 Global Navigation Satellite 

System(GNSS)에만 의존하는 것은 신호 단절 및 교란에 

대한 취약성으로 위치 정보의 안정성을 확보하는 데 

한계가 있다. 이러한 문제를 해결하기 위해서 저궤도 

위성 기반 위치 추정 연구가 주목받고 있다 [1]. 위치 

추정에 정확도를 나타내는 지표로는 Geometric Dilution 

Of Precision(GDOP)가 있다. 하지만 저궤도 위성의 빠른 

이동성으로 가시 위성이 빈번하게 변하여 위치 추정에 

있어 복잡도 증가를 야기한다. 이로 인해 낮은 GDOP 

값을 가지는 위성 조합 선택 알고리즘에 대한 연구가 

필요하다. 본 논문은 Set Transformer로 최적의 GDOP 

값을 가지는 위성의 기하학적 구조를 학습하고, 이를 

기반으로 실시간 위성 조합을 선택하는 모델을 제안한다. 

 

Ⅱ. 시스템 모델 

1. 군집 저궤도 위성 배치와 GDOP 산출 

본 논문에서는 그림 1과 같이 저궤도 위성의 Walker 

Delta 배치를 가정한다. Walker Delta 배치는 궤도 

경사각이 90° 미만인 궤도면에 위성을 균등하게 

배치하는 방식이다. 수신기는 위치와 시계 오차를 포함한 

4개의 미지수를 계산해야 한다. 따라서 4개의 가시 

위성으로부터 수신된 신호들을 통해 의사거리를 

측정하여 위치를 추정한다. 이러한 위치 추정의 정밀도는 

위성과 수신기의 배치에 따라 결정되며, 이는 GDOP를 

통해 정량적으로 평가할 수 있다. GDOP는 위성의 

기하학적 배치가 위치 오차에 미치는 영향을 나타내는 

지표로, 식 (1)과 같이 계산한다. 

 

𝐺𝐷𝑂𝑃 = √𝑡𝑟𝑎𝑐𝑒((𝐻𝑇𝐻)−1), (1) 

 

𝐻는 수신기에서 각 가시 위성 간의 단위 위치 벡터로 구

성되며, GDOP 값이 낮을수록 위치 추정에 있어 높은 정

확도를 가진다 [2].  

 

2. 제안하는 Set Transformer 기반 모델 

가시 위성의 모든 조합을 탐색하는 방식은 정확도가 

높다. 하지만 가시 위성의 수가 증가함에 따라 탐색할 

위성 조합의 수가 기하급수적으로 증가한다. 이런 문제를 

해결하고자 Set transformer 기반 위성 선택 모델을 

제안한다. 제안하는 모델은 위성의 기하학적 분포와 

GDOP 값 간의 데이터를 통해 사전 학습한다. 이를 통해 

수신기는 모든 조합을 탐색하는 과정 없이 위성 조합을 

선택할 수 있다. 본 논문에서 제안하는 딥러닝 모델의 

구조는 그림 1과 같다. 입력으로는 가시 위성들의 단위 

Line-of-Sight (LoS) 벡터와 고도각을 사용한다. 딥러닝 

모델은 Self-Attention을 통해 각 위성이 다른 위성과의 

관계를 고려한 전역 특징( 𝑧𝑖 )을 추출하고, Pooling by 

Multi-head Attention(PMA)를 통해 위성 집합의 기하학 

구조를 반영한 글로벌 특징( 𝑔 )을 생성한다. 이후 𝑧𝑖 와 

𝑔를 결합하여, 위성 선택 확률을 산출한다 [3][4]. 손실 

함수 𝐿은 Binary Cross Entropy(BCE)로 정의되며, 𝐿의 

수식은 아래와 같다. 

그림 1. 시스템 모델, (a) Walker Delta 위성 배치, 

(b) Set Transformer 기반 모델 

(a) (b) 



표 1. 시뮬레이션 파라미터 

Parameters Values 

Satellite Altitude 600 km 

Orbital Inclination 50° 

Number of Orbital Planes 20 

Satellites per Plane 100 

Minimum Elevation Angle 10° 

Satellite Selection 4 

Model Dimension 512 

Layers 2 

Heads 8 

Learning Rate 3x10-4 

Num. Epochs 50 

Batch Size 32 

 

𝐿 = −𝛼
1

𝑁𝑇
∑log(𝑝̂𝑖) − 𝐵

1

𝑁𝐹
∑log(1 − 𝑝̂𝑗)

𝑁𝐹

𝑗=1

𝑁𝑇

𝑖=1

, (2) 

 

𝑁𝑇 는 선택된 위성 개수, 𝑁𝐹 는 선택되지 않은 위성의 

개수로 정의한다. 𝑝̂는 각 위성이 선택될 확률을 의미하며, 

𝛼 와 𝛽 는 선택된 위성과 선택되지 않은 위성에 대한 

가중치를 나타낸다. 데이터는 총 5개의 수신기를 

가정하여 구성하였으며, 각 시점마다 위성 위치 정보, 

GDOP 값, 해당 시점의 최적 위성 조합으로 구성된다. 

다른 장소에 배치한 수신기를 기준으로 제안하는 딥러닝 

모델의 일반화 성능을 검증한다. 
 

Ⅲ. 시뮬레이션 분석 

본 논문에서는 제안하는 Set Transformer 기반 위성 

선택 모델의 성능을 검증하기 위해 시뮬레이션을 

수행하였다. 군집 저궤도 위성망은 표 1과 같이 Walker 

Delta 배치를 기반으로 총 2,000개의 위성으로 구성하고, 

손실 함수 가중치 α와 β는 1.0과 1.2로 설정하였다. 본 

논문에서 제안하는 모델의 성능 분석을 위해 세 가지 

딥러닝 모델과 성능을 비교하였다. Max pooling 기반 

row-wise Feed Forward (rFF) 모델은 Self-Attention을 

활용하지 않은 딥러닝 모델이다. 제안하는 모델과 달리 

Max-pooling 연산을 적용하여 최대 확률의 위성 집합을 

선택하고 이를 학습한다. Max pooling 기반 Self-

Attention Block(SAB) 모델은 Self-Attention 기반 set 

transformer 모델이다. 그러나 제안하는 PMA 방식 대신, 

max-pooling을 사용하여 학습한다. 

성능 비교의 기준이 되는 Baseline은 선택 가능한 

모든 위성 조합을 전수 조사하는 Brute-force 방식을 

통해 도출된 최적 GDOP 값을 의미한다. 표 2는 이러한 

Baseline과 제안하는 PMA 기반 SAB를 포함한 여러 

딥러닝 아키텍처의 평균 GDOP 성능을 비교한 결과이다. 

제안하는 PMA 기반 SAB 모델은 평균 GDOP가 

2.235로, 최적값인 Baseline의 2.086 대비 약 7.14% 

차이를 보인다. 또한 Max based rFF 모델 대비 약 

48.31%, Max based SAB 모델 대비 약 6.76% 향상된 

결과를 보인다. 이는 제안하는 모델이 다른 딥러닝 

모델보다 Self-Attention과 PMA를 통해 위성 간의 

기하학적인 관계를 잘 학습했음을 확인할 수 있다. 

 그림 2는 훈련에 사용한 수신기 수를 각각 2개와 5개로 

배치하였을 때의 평균 GDOP 값을 나타낸다. 수신기 2개 

표 2. 시뮬레이션 결과 

모델 평균 GDOP 
TOP-4 

accuracy 
Baseline 2.086 - 

Max based rFF 4.324 61% 

Max based SAB 2.397 82% 
PMA based SAB 2.235 84% 

 

인 소규모 데이터로 훈련했을 때, 제안 모델의 GDOP는 

3.571으로 Max pooling 기반 SAB 모델의 3.699 대비 

약 3.46%, rFF 모델의 6.518 대비 약 45.21% 우수한 

성능을 보였다. 5개의 수신기를 배치하였을 때, 제안하는 

모델의 GDOP는 2.235로 크게 향상되었다. 이는 훈련 

데이터 규모가 커질수록 다양한 기하학적 관계를 

학습하여 성능이 향상되었으며 Baseline 방식의 최적 

GDOP 성능에 근접함을 확인할 수 있다. 

 

Ⅳ. 결론 

본 논문에서는 저궤도 위성 기반 위치 추정 시 

발생하는 위성 선택 문제를 해결하기 위해, 최적의 

GDOP를 가지도록 위성을 선택하는 Set Transformer 

기반 딥러닝 모델을 제안한다. 시뮬레이션 결과, 

제안하는 모델은 훈련 데이터 규모가 커질수록 Baseline 

방식의 최적 GDOP 값에 근접함을 보인다. 또한 다른 

딥러닝 모델보다 최적의 성능을 확인할 수 있다. 이는 

기존 최적화 방식을 Set Transformer 기반 딥러닝 

모델로 대체하여, 저궤도 위성 기반 위치 추정 시스템의 

정밀도 향상에 기여할 것으로 기대된다. 
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그림 2. 훈련 데이터 수신기 수에 따른 GDOP 성능 


