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요 약  

 
본 논문은 연합학습(FL: Federated learning)의 주요 도전 과제인 통신 및 연산 자원 효율성 개선을 위한 효과적인 

방안으로 모델 경량화 기법에 대해 살펴본다. 즉, 연합학습 중 학습 및 자원 상황에 따라 적응적으로 일부 모델 

파라미터를 제거 혹은 비활성화해 모델을 경량화함으로써, 큰 성능 저하 없이 지역학습 및 지역모델 전송에 필요한 

연산통신 자원을 크게 낮출 수 있다. 모델 경량화 기반의 기존 연합학습 기법들의 주요 특징과 장단점을 소개하고, 향후 

연구방향으로 빈도주의적(frequentist) 접근이 갖는 한계를 보완할 수 있는 베이지안(Bayesian) 접근 기반의 불확실성 

정량화와 이를 활용한 모델 경량화 방법을 제안한다. 

 

 

Ⅰ. 서 론  

연합학습(FL: Federated learning)은 다수의 클라이언

트들이 각자 본인이 소유한 지역 데이터를 기반으로 분

산 학습을 수행하고, 지역 학습된 모델을 전송해 서버에

서 이들을 합성함으로써 데이터의 직접적인 전송 없이 

학습을 수행할 수 있는 기법이다 [1]. 전역 모델의 수렴

을 위해서는 이와 같은 지역 학습과 전송을 여러 차례 

반복해야 하고, 이는 상당한 연산 및 통신 부하를 발생시

켜 연합학습의 주요 병목으로 고려되고 있다. 이와 같은 

연학학습의 병목현상을 완화하기 위한 효과적인 방안으

로 모델의 차원을 줄이는 모델 경량화 연구가 활발히 진

행되고 있다. 본 논문에서는 Lottery Ticket 가설을 바탕

으로 pruning, dropout 을 설명하고 FL 에서의 적용방법

에 대해서 살펴본다. 나아가 기존 대부분의 FL 기법이 

채택하고 있는 빈도주의적(frequentist) 접근법들의 한계

점 극복을 위한 베이지안(Bayesian) 접근 기반의 모델 

경량화를 설명하고 이를 FL 환경에 적용하는 후속 연구 

방향을 제안한다.  

 

Ⅱ. 본 론  

Lottery Ticket 가설과 관련 실험들을 통해 거대한 신

경망 안에 실제로는 훨씬 작은 규모의 효율적인 서브넷

(subnetwork)가 존재하며, 이 부분만으로도 원래 전체 

모델과 거의 동일한 성능을 낼 수 있음이 잘 알려져 있

다 [2]. 해당 가설을 기반으로 한 모델 경량화를 통해 

FL 환경에서 연산 및 통신 효율성을 향상을 동시에 기대

할 수 있다 [3]. 본 장에서는 (i) 로컬에서 서브넷을 도

출하는 기준과 절차 (ii) 클라이언트별로 상이한 서브넷을 

글로벌 모델로 결합하는 방법을 기준으로 다양한 경량화 

기법들을 설명한다. 
 

2.1 Adaptive Pruning 

Pruning 은 신경망 일부 파라미터를 0 으로 만들어 모

델을 경량화하는 방법이다. FL 에서는 로컬 학습 과정에

서 중요도 지표(누적 squared gradient 등)를 기반으로 

파라미터를 제거하여 클라이언트별 경량화된 신경망을 

형성하고, 재구성 라운드에서 서버가 여러 클라이언트의 

중요도 지표를 바탕으로 목표 밀도/마스크를 주기적으로 

재설계함으로써 학습 진행상황에 따라 적응적으로 모델

이 변화한다(PruneFL) [4]. 서버에서의 지역 모델 결합

은 (i) 표준 가중 평균(FedAvg) 또는 (ii) 겹치는 파라미

터만 집계(overlapped-only aggregation) 같은 규칙을 

사용한다. 전자는 단순하고 보편적이며, 후자는 개인화 

정보 보존에 유리하다. 한편 pruned global model 이 항

상 모든 클라이언트에 대해 winning ticket 임을 보장하

지는 않으나, FL 환경에서 초기값으로 되돌려 재학습해도 

pruning 되지 않은 원래의 모델로 학습했을 때와 비슷한 

성능을 보임을 통해 글로벌 모델 기준 winning ticket 성

질을 확인할 수 있다. 하지만 PruneFL 특성상 재구성 라

운드에서 full-model 과 중요도 지표를 전송함에 따라 통

신량이 증가하고, 학습과정에서 일반적인 FL 에 비해 더 

많은 하이퍼파라미터에 의존하는 한계가 존재한다. 
 

2.2 Dropout 

Dropout 은 원래 과적합 방지 기법이지만, FL 에서는 

통신·연산 비용을 줄이기 위한 방안으로 활용될 수 있다 

[5]. 로컬 서브넷 도출은 서버가 전역 모델에서 클라이

언트별 제약(연산/대역/지연)에 맞춘 크기의 서브넷을 무

작위로 생성·배정하거나, 클라이언트가 자신의 dropout 

비율에 따라 부분 모델만 활성화해 학습하는 방식으로 



이뤄진다. 글로벌 결합은 각 클라이언트가 서브넷 파라미

터만 업로드하면, 서버가 비활성 파라미터는 직전 전역값

으로 복원한 뒤 평균 집계로 전역 모델을 갱신한다. 이 

방식은 pruning 대비 구현이 단순하고 클라이언트별 통

신·연산 부담을 크게 낮출 수 있는 장점이 있으나, 서브

넷 매칭·복원 규칙에 따라 성능이 크게 변화하는 단점을 

갖는다. 
 

2.3 Bayesian Neural Network 

기존 대부분의 FL 기법들은 빈도주의 접근에 기반하고 

있어 모델 및 추론 결과에 대한 신뢰도 혹은 불확실도를 

정량화하지 못한다. 즉 학습된 모델에서 어떤 파라미터가 

더 중요한 역할을 하는지, 추론 결과는 얼마나 신뢰할 만

한지 확인하기 어렵다. 특히, 이와 같은 특징은 데이터가 

적거나 Non-IID 한 환경에서 학습 성능을 크게 저하시키

는 문제를 낳을 수 있다 [6]. 따라서, 모델 파라미터 및 

추론 결과의 불확실도를 정량화하고, 이를 학습 및 전송

에 활용해 적응적인 FL 을 가능하게 하는 베이지안 FL

이 최근 연구되고 있다 [7]. 로컬 서브넷/분포 획득은 각 

클라이언트가 로컬 데이터로 posterior 분포(Gaussian 

Approximation; 평균·분산)를 학습하거나, 분산(불확실

성)을 고려한 Bayesian pruning 으로 신뢰도 기반 희소 

마스크를 설계할 수 있다. Bayesian pruning 에서 파라미

터의 신뢰도 정량화를 위한 지표로는 대표적으로 SNR, 

SPR, BMR 등이 있다. 글로벌 결합은 기존 FL 의 점 추

정 평균과 달리, 클라이언트에서 학습한 local posterior 

간의 곱으로 global posterior 를 업데이트를 수행함으로

써 신뢰도가 고려된 보다 안정적인 모델 합계를 가능하

게 한다. 이는 불확실성 표현과 데이터가 적은 클라이언

트에 대한 정규화 효과 측면의 이점을 줄 수 있으며,   

파라미터(평균·분산)의 효율적 전송을 통해 통신량을 줄

일 수 있다.  

 

III. 결 론  

본 논문에서는 연산 및 통신 효율성 향상을 위한 모델 

경량화 기반의 연합학습 기법들에 대해 살펴보았다. 이들 

대부분의 연구들은 frequentist 접근에 기반하고 있어 학

습 데이터가 적고, 분포가 상이한 환경에서 학습성능이 

저하되는 단점을 갖는다. 이와 같은 단점 극복을 위해 최

근 Bayesian FL 이 연구되어 있으나 아직 초기 단계에 

머물러 있는 상황이다. 이에 (i) 경량화된 BNN 의 FL 

global aggregation 규칙 (ii) BNN 경량화 기법 (iii) 

Bayesian 경량화, FL 집계의 공동 설계를 통해 정확도–

효율–불확실성 트레이드오프의 정량 검증에 대한 후속연

구를 수행할 계획이다. 
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