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Abstract—Quantum machine learning is increasingly and read-
ily being used for noisy intermediate-scale quantum (NISQ)
networks. With such a fast development, the limitations of NISQ
hardware present challenges in scalability and reliability. As the
number of used gates increase, decoherence and output errors
are increased with it. In this work, we present an adaptive
optimization and pruning technique, based on reinforcement
learning (RL), particularly the proximal policy optimization
(PPO) algorithm, to optimize and prune quantum circuits by
reducing gate count while preserving fidelity. Unlike fixed-
threshold approaches, our RL agent learns pruning strategies
directly from circuit features and performance feedback. After
evaluating the model on different 3-qubits circuits, it achieves
up to 38% gate reduction with fidelity above 88%, providing
reliable results. Our framework generalizes seamlessly to circuit
structures not encountered during training.

I. INTRODUCTION

Quantum circuits form the core of all quantum algorithms,
ranging from Grover’s search to variational algorithms. A
recent approach utilizes quantum witness machines to infer
properties directly from circuit behaviors, showcasing the
rapid growth in quantum computing fields [1], [2]. In the
noisy intermediate-scale quantum (NISQ) era, quantum de-
vices are constrained by short coherence times and error-
prone gate operations. Minimizing circuit complexity while
preserving fidelity is key to reducing errors [3]. Practical
systems, including ion-trap architectures, face some additional
issues such as motional heating and detuning errors [4].
Reinforcement learning (RL) offers an effective framework for
quantum circuit optimization, allowing an agent to iteratively
explore configurations and learn strategies that balance fidelity
with resource efficiency. Recent work has demonstrated the
potential of quantum deep reinforcement learning (QDRL)
in complex environments, such as integrating digital twins
to optimize and secure 6G networks [5], highlighting the
broader applicability of quantum learning methods. Thus cir-
cuit pruning can eliminate gates that contribute minimally to
the computation, thereby reducing complexity and mitigating
decoherence effects.

II. METHODOLOGY

RL has been shown to optimize quantum circuits. In particu-
lar, ZX-calculus combined with graph neural networks within
an RL framework has been used to reduce controlled-NOT
(CNOT) gates [6].

Pruning in quantum circuits involves identifying and re-
moving redundant or less significant gates to reduce circuit

complexity while ensuring maximum fidelity. By eliminating
unnecessary gates, the circuit becomes more efficient, which
is crucial for near-term quantum devices with limited coher-
ence times and gate fidelity. In our approach, reinforcement
learning is employed to guide the pruning process where an
agent learns to select which gates to remove by optimizing
a reward function that balances gate reduction and fidelity
preservation. Over time, the agent learns pruning strategies that
maximize compression while maintaining the circuit’s func-
tional accuracy, enabling more efficient and scalable quantum
computations. Pruning is modeled as a continuous-action task
in a custom Gym environment. Each state encodes circuit-level
features such as gate distribution (Pauli-X, Y, Z, Hadamard,
R,, Ry, R.), depth, gate count, fidelity, and reduction ratio.
The action is a threshold # € [0, 7] which is used to prune
rotation gates based on their angles.
The reward encourages fidelity preservation and gate reduc-
tion:
Rt = 2Ff + 1-5Rg,t + bt — Pt (1)

where R; is the reward, F} is the fidelity, 17, ; is the gate
reduction ratio, b; is the bonus, and p; is the penalty, all at
time step t.

Fidelity is measured as the modulus squared of the inner
product of the original and pruned statevectors:

F= |<wideal‘wpruned>|2 (2)

where |Yigea) and [¢prned) are the statevectors of the
original and pruned circuits.

A proximal policy optimization (PPO) agent learns a
stochastic policy 7y (a|st), mapping states to action probabili-
ties. Training stability is ensured through the clipped surrogate
objective, which restricts large policy updates.

LOP(9) = E, [min (re(0) Ay, clip(ry(0),1 — €,1 + €) A,)

3)
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between the current policy and the previous policy, Ay repre-
sents the advantage estimate, measuring the relative benefit of
an action compared to the expected outcome, and € is a small
hyperparameter that sets the clipping threshold.

The advantage Ay is computed using Generalized Advan-
tage Estimation (GAE):

where 7(0) =



Ay =8+ (YN8 -+ (N e @)

with the temporal-difference residual:

5t = Rt —+ ’7V(8t+1) — V(St) (5)

where V (s;) is the value function estimating expected future
rewards, 7 is the discount factor, and A is a smoothing
parameter. The policy network is updated iteratively using
gradient ascent on LHP(9) to maximize expected cumulative
reward.

This framework allows dynamic adaptation of pruning
thresholds, prioritizing fidelity preservation while achieving
significant gate reduction.

III. RESULTS

The RL agent is trained on 2,356 randomly generated three-
qubit circuits, each with 25-30 gates sampled from a universal
set of single-qubit rotations (X, Y, Z, H, R;, R,, R,)
and two-qubit CNOT gates. Rotation parameters were drawn
uniformly from [—m, 7r]. Circuits are regenerated each episode
to ensure diversity, prevent overfitting, and promote robust,
generalizable policy learning. Training spanned 300,000 time
steps with a reward function promoting high fidelity and gate
reduction. Bonus rewards were given when fidelity exceeded
90% and reduction surpassed 10%, while penalties discour-
aged reductions below 4%, ensuring meaningful pruning.

The trained RL agent was evaluated on three unseen quan-
tum circuits to assess generalization capabilities. Circuit 1
contains 20 gates, Circuit 2 has 24 gates, and Circuit 3
has 21 gates, each composed of single-qubit rotations (X,
Y, Z, H, R;, R,, R;) and two-qubit CNOT gates. The
agent achieved gate reductions of 5%, 12.5%, and 38.10%
for Circuits 1-3, respectively, with corresponding fidelities of
98.51%, 99.02%, and 88.28%, illustrating a trade-off between
compression and accuracy. These results indicate that the
RL agent effectively balances gate reduction with functional
preservation. Bonus rewards encouraged meaningful pruning,
while penalties prevented trivial solutions where fidelity could
be maximized without actual gate removal.

IV. CONCLUSION

An RL-based approach employing a PPO agent is pro-
posed for adaptive quantum circuit pruning, with the goal
of removing redundant gates while maintaining high fidelity.
The agent determines which gates to prune by exploring the
circuit environment and adjusting its actions to maximize
a reward that considers both gate minimization and fidelity
maintenance. Experimental results on a variety of quantum
circuits demonstrate that the method effectively accomplishes
the intended task. These findings highlight the potential of
reinforcement learning for automated quantum circuit opti-
mization. Future work will focus on deploying the method on
IBM Quantum (IBMQ) hardware, scaling to larger and more
complex circuits, and integrating with CNOT gate reduction
strategies to further enhance pruning efficiency and overall
circuit performance.
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Figure 1. The plot presents the pruning results for three quantum circuits,
showing fidelity and gate reduction percentages. As gate reduction increases,
fidelity decreases, reflecting how pruning intensity varies with circuit com-
plexity and highlighting the trade-off between reduction and fidelity.
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