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Abstract—We present a mathematical formulation for imple-
menting the Helstrom measurement for quantum state discrimi-
nation using linear optical devices. It is known that performing
collective measurements on n copies of a quantum state can
reduce the minimum error probability. However, such collective
measurements typically require nonlinear optical interactions.
Here, we show theoretically that the Helstrom measurement can
be implemented on a linear optical platform through a sequence
of single-copy repeated Helstrom measurements.

I. INTRODUCTION

In minimum-error quantum state discrimination [1], also
known as the Helstrom measurement, we consider two non-
orthogonal quantum states Ξ0 and Ξ1. Suppose Alice prepares
one of these states and sends it to Bob, whose task is to
determine which state was sent. To do so, Bob constructs the
Helstrom operator

∆ = qΞ0 − (1− q)Ξ1, (1)

where q denotes the prior probability that Ξ0 was sent. The
minimum achievable error probability is given by the Helstrom
bound

P
(err)
min =

1

2
[1− ∥∆∥1] , (2)

where ∥∆∥1 = tr
(√

∆†∆
)

is the trace norm of ∆.
The optimal measurement associated with ∆ is described

by a two-element positive operator-valued measure (POVM),

M0 =
∑
λi≥0

|ϕi⟩⟨ϕi|, M1 =
∑
λi<0

|ϕi⟩⟨ϕi|, (3)

where λi and |ϕi⟩ are the eigenvalues and eigenvectors of ∆,
respectively. The POVM elements satisfy

M0 +M1 = I, (4)

where I is the identity operator.
A POVM can equivalently be written in terms of Kraus

operators {Ki} as

Mi = K†
iKi,

∑
i

K†
iKi = I. (5)

When outcome i occurs, the post-measurement state is

Ξ ′
j→i =

KiΞjK
†
i

tr(KiΞjK
†
i )
. (6)

The minimum error probability can be further reduced if
multiple identical copies of the state are available. If Alice
prepares Ξ⊗n

0 or Ξ⊗n
1 , the corresponding Helstrom bound

becomes

P
(err)
min (n) =

1

2

[
1−

∥∥qΞ⊗n
0 − (1− q)Ξ⊗n

1

∥∥
1

]
. (7)

In the asymptotic limit n→∞, the error probability obeys the
quantum Chernoff bound [2]:

lim
n→∞

− lnP
(err)
min (n)

n
= ζ(Ξ0,Ξ1), (8)

where the error exponent is

ζ(Ξ0,Ξ1) = − ln

[
min

0≤z≤1
Tr

(
Ξz

0Ξ
1−z
1

)]
. (9)

Consequently,

P
(err)
min (n) ∼ e−nζ(Ξ0,Ξ1). (10)

While collective measurements on n copies achieve the
minimum error allowed by the quantum Chernoff bound,
such measurements are experimentally demanding. It has been
shown in [3] that near-optimal performance can be achieved
by repeated partial collective measurements. This method
operates by performing collective measurements on m ≪ n
copies, repeated n/m times, with the final outcome determined
by majority voting. The protocol asymptotically attains the
same error exponent as the optimal collective measurement.

Here, we briefly demonstrate how the repeated Helstrom
measurement can be implemented on one of the simplest
quantum platforms, which is a linear optical device consisting
only of beam splitters and phase shifters. We focus on the
simplest case of m = 1, corresponding to single-copy repeated
Helstrom measurements.

II. IMPLEMENTING THE REPEATED HELSTROM
MEASUREMENTS WITH TUNABLE LINEAR OPTICS

A. Decomposition of POVM Operators

Any square matrix A can be decomposed as A = V †DU ,
where U ,V are unitary and D is diagonal. Thus, a Kraus
operator Ki can also be expressed as Ki = V †

i DiUi.
Consequently,

M0 = K†
0K0 = U †

0D
†
0D0U0, (11)

M1 = I −M0 = U †
0 (I −D†

0D0)U0. (12)



Consider a single-photon polarization state

|ψ⟩ = α|H⟩+ β|V ⟩, (13)

where |H⟩ and |V ⟩ denote horizontal and vertical polarization,
respectively. As shown in [4], a photonic circuit consisting
only of linear optical elements (beam splitters, polarization
rotators, and phase shifters) can perform the following trans-
formations:

D0 :

[
α
β

]
7→

[
eiϵ0 cos θ 0

0 cosϕ

][
α
β

]
, (14)

D1 :

[
α
β

]
7→

[
eiϵ1 sin θ 0

0 sinϕ

][
α
β

]
. (15)

Here, ϵ0, ϵ1 are phase shifts and θ, ϕ are rotation angles. The
detection probabilities at the two output ports G0 and G1 are
given by

PG0 = tr(ΞM0), PG1 = tr(ΞM1).

B. Parameter Optimization for Linear Optics

The Helstrom bound can equivalently be expressed as an
optimization over POVM elements:

P
(err)
min = min

{M0,M1}

[
q tr(Ξ0M1)+(1− q) tr(Ξ1M0)

]
. (16)

Each POVM element can be parameterized as

Mi(λi) = Ui(λUi
)†Di(λDi

)2Ui(λUi
), (17)

where
U = eiγ/2

[
eiµ cos ξ eiν sin ξ

−e−iν sin ξ e−iµ cos ξ

]
. (18)

Substituting M1 = I − M0 yields a simplified optimization
problem:

Perr = q −max
λ0

tr(∆M0(λ0)), (19)

where λ0 = {λU0
,λD0

} are experimentally tunable parame-
ters with λU0

= {µ0, ν0, ξ0} and λD0
= {ϵ0, θ0, ϕ0}.

For a given pair of qubit states Ξ0,Ξ1, the optimal linear-
optical parameters realizing the Helstrom POVM are obtained
by numerically minimizing Eq. (19). In practice, photon polar-
ization states Ξ0 and Ξ1 are prepared, and the parameters λ0

are optimized to minimize the error probability. The resulting
configuration of beam splitters, phase shifters, and rotators is
then applied to the setup. When single photons are sequentially
transmitted, detections at G0 and G1 correspond to Ξ0 and
Ξ1, respectively, implementing a sequence of single-copy
Helstrom measurements with linear optics.

C. Example

As an example, we simulate the discrimination of the qubit
pair

Ξ± = 1
2 (I ± κσx) , (20)

where σx is the X-Pauli operator and κ quantifies the state
mixedness. For κ = 0.1, Fig. 1 compares the simulated
error exponents for the exact and tunable POVMs. Optimizing
the tunable parameters yields POVMs that effectively realize

0 100 200 300 400 500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of copies n

E
rr
o
r
ex
p
o
n
en

t

Tunable POVM

Exact Helstrom POVM

Quantum Chernoff bound

Fig. 1. Error exponents for repeated Helstrom measurements using the exact
(3) and tunable POVMs (17).

the Helstrom measurement, and as the number of repetitions
n increases, the empirical error exponent approaches the
quantum Chernoff bound.

III. CONCLUSION

We proposed a theoretical scheme for implementing re-
peated Helstrom measurements on a tunable linear-optical plat-
form. Numerical optimization of the optical parameters yields
POVM operators realizing the single-copy Helstrom measure-
ment. When repeated with majority voting, the method asymp-
totically approaches the quantum Chernoff bound, demonstrat-
ing that optimal discrimination can be achieved using only
linear optics.
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