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Abstract—We present a mathematical formulation for imple-
menting the Helstrom measurement for quantum state discrimi-
nation using linear optical devices. It is known that performing
collective measurements on n copies of a quantum state can
reduce the minimum error probability. However, such collective
measurements typically require nonlinear optical interactions.
Here, we show theoretically that the Helstrom measurement can
be implemented on a linear optical platform through a sequence
of single-copy repeated Helstrom measurements.

I. INTRODUCTION

In minimum-error quantum state discrimination [1], also
known as the Helstrom measurement, we consider two non-
orthogonal quantum states = and =. Suppose Alice prepares
one of these states and sends it to Bob, whose task is to
determine which state was sent. To do so, Bob constructs the
Helstrom operator
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where g denotes the prior probability that =, was sent. The
minimum achievable error probability is given by the Helstrom
bound
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where | All; = tr ( ATA) is the trace norm of A.

The optimal measurement associated with A is described
by a two-element positive operator-valued measure (POVM),
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where \; and |¢;) are the eigenvalues and eigenvectors of A,
respectively. The POVM elements satisfy
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where I is the identity operator.
A POVM can equivalently be written in terms of Kraus
operators {K;} as
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When outcome ¢ occurs, the post-measurement state is
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The minimum error probability can be further reduced if
multiple identical copies of the state are available. If Alice

prepares 583" or "='®" the corresponding Helstrom bound
becomes
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In the asymptotic limit n — oo, the error probability obeys the
quantum Chernoff bound [2]:
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where the error exponent is
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Consequently,
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While collective measurements on n copies achieve the
minimum error allowed by the quantum Chernoff bound,
such measurements are experimentally demanding. It has been
shown in [3] that near-optimal performance can be achieved
by repeated partial collective measurements. This method
operates by performing collective measurements on m < n
copies, repeated n/m times, with the final outcome determined
by majority voting. The protocol asymptotically attains the
same error exponent as the optimal collective measurement.

Here, we briefly demonstrate how the repeated Helstrom
measurement can be implemented on one of the simplest
quantum platforms, which is a linear optical device consisting
only of beam splitters and phase shifters. We focus on the
simplest case of m = 1, corresponding to single-copy repeated
Helstrom measurements.

II. IMPLEMENTING THE REPEATED HELSTROM
MEASUREMENTS WITH TUNABLE LINEAR OPTICS
A. Decomposition of POVM Operators

Any square matrix A can be decomposed as A = VDU,
where U,V are unitary and D is diagonal. Thus, a Kraus

operator K; can also be expressed as K; = ViTDiUZ—.
Consequently,
M, = KK, = U/ D} D,U,, (11
M, = I — M, = U}(I — D} Dy)Uy. (12)



Consider a single-photon polarization state
¥) = alH) + BIV),

where |H) and |V') denote horizontal and vertical polarization,
respectively. As shown in [4], a photonic circuit consisting
only of linear optical elements (beam splitters, polarization
rotators, and phase shifters) can perform the following trans-
formations:
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Here, €g, €1 are phase shifts and 6, ¢ are rotation angles. The
detection probabilities at the two output ports Gy and G are
given by
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Pg, =tr(EMy),  Pg, = tr(EM;).
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B. Parameter Optimization for Linear Optics
The Helstrom bound can equivalently be expressed as an
optimization over POVM elements:
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Each POVM element can be parameterized as
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Substituting M; = I — M, yields a simplified optimization
problem:

Perr =q— HlA%XtI‘(AMo(Ao)), (19)
where Ao = {A\u,, AD, } are experimentally tunable parame-
ters with )\U0 = {Mo,llo,fo} and ADO = {Eo,eo,qbo}.

For a given pair of qubit states =y, =, the optimal linear-
optical parameters realizing the Helstrom POVM are obtained
by numerically minimizing Eq. (19). In practice, photon polar-
ization states = and = are prepared, and the parameters A\g
are optimized to minimize the error probability. The resulting
configuration of beam splitters, phase shifters, and rotators is
then applied to the setup. When single photons are sequentially
transmitted, detections at Gy and G correspond to = and
=, respectively, implementing a sequence of single-copy
Helstrom measurements with linear optics.

C. Example

As an example, we simulate the discrimination of the qubit
pair

Ey =3I tkoy), (20)

where o is the X-Pauli operator and « quantifies the state
mixedness. For k = 0.1, Fig. 1 compares the simulated
error exponents for the exact and tunable POVMs. Optimizing
the tunable parameters yields POVMs that effectively realize
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Fig. 1. Error exponents for repeated Helstrom measurements using the exact
(3) and tunable POVMs (17).

the Helstrom measurement, and as the number of repetitions
n increases, the empirical error exponent approaches the
quantum Chernoff bound.

III. CONCLUSION

We proposed a theoretical scheme for implementing re-
peated Helstrom measurements on a tunable linear-optical plat-
form. Numerical optimization of the optical parameters yields
POVM operators realizing the single-copy Helstrom measure-
ment. When repeated with majority voting, the method asymp-
totically approaches the quantum Chernoff bound, demonstrat-
ing that optimal discrimination can be achieved using only
linear optics.
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