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요 약  

 
본 논문은 multiple-input multiple-output 시스템을 위한 long short-term memory (LSTM) 기반 채널 추정 

방법들의 성능을 비교한다. 모의실험을 통해 송신 안테나별로 채널을 추정하기 위해 여러 개의 LSTM 을 활용하는 

구조가 하나의 LSTM 으로 모든 송신 안테나의 채널을 추정하는 구조보다 우수한 normalized mean square error 

성능을 얻을 수 있음을 확인한다. 

 

 

Ⅰ. 서 론  

자율주행 기술의 발전과 더불어, 차량과 교통 인프라 

간의 통신에서 매우 짧은 지연과 높은 신뢰성을 

요구하는 vehicle-to-everything (V2X) 기술은 차세대 

교통 시스템의 핵심 요소로 자리 잡고 있다 [1], [2]. 

V2X 환경에서 채널은 차량의 이동성으로 인해 시간에 

따라 빠르게 변화하며, 이에 따라 통신 성능을 

안정적으로 확보하기 위한 정확한 채널 추정이 

필수적이다. 기존의 보간 기반 채널 추정 방법은 높은 

이동성을 가진 환경에서의 채널 추정 성능에 한계를 

보이는데, 인공지능 기술의 발전과 함께 많은 주목을 

받는 딥러닝 기반 채널 추정 방법은 이러한 문제점을 

극복할 수 있을 것으로 기대받고 있다 [3], [4]. 특히 

long short-term memory (LSTM)은 장기 의존성을 

효과적으로 학습할 수 있어 V2X 통신에서의 채널 

추정에 적합하다 [5]. 한편, 시변 채널의 시간 영역 

특성만 LSTM 으로 학습하는 single-input single-output 

(SISO) 시스템과 달리, multiple-input multiple-output 

(MIMO) 시스템에서는 시간 영역과 공간 영역의 특성을 

함께 학습해야 한다. 하지만 MIMO 시스템을 위한 

LSTM 기반 채널 추정 방법에서, 구조에 따른 성능 

평가는 아직 충분히 이루어지지 않았다. 

따라서 본 논문에서는 MIMO 시스템을 위한 LSTM 

기반 채널 추정 방법들을 설계하고, 구조에 따른 성능을 

시변 채널에서 평가한다. 특히, 하나의 LSTM 으로 시간 

영역과 공간 영역의 특성을 동시에 학습하는 구조와 

여러 개의 LSTM 으로 시간 영역 특성만을 송신 

안테나별로 학습하는 구조를 비교해, 서로 다른 두 가지 

영역을 동시에 학습시키는 방식이 채널 추정 성능에 

미치는 영향을 확인한다. 모의실험을 통해 우수한 채널 

추정 성능을 얻기 위해서 여러 개의 LSTM 으로 시간 

영역의 특성만을 독립적으로 학습시키는 구조가 

적합함을 검증한다. 또한, 송신 안테나의 수가 증가할 

경우, LSTM 기반 MIMO 채널 추정 방법이 사용하는 

구조에 따른 normalized mean square error (NMSE) 

성능 차이가 더 벌어짐을 보인다. 

Ⅱ. 본 론  

A. 시스템 모델 

본 논문에서는 TN 개의 송신 안테나와 RN 개의 수신 

안테나를 가진 R TN N  MIMO 시스템을 고려한다. 

송신단에서는 모든 송신 안테나가 순차적으로 파일럿 

심볼을 전송하고, 수신단은 least square (LS) 알고리즘을 

이용해 각 송신 안테나의 채널 벡터를 추정하는 파일럿 

심볼 기반 채널 추정 방법을 가정한다.  번째 심볼 

구간에서 p 번째 송신 안테나에 해당하는 실제 채널 

열벡터와 추정 채널 열벡터를 각각 p

h 와 ˆ p
h 로 

정의하면, 실제 MIMO 채널 행렬은 
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성능을 평가하기 위한 NMSE 값은 다음과 같이 나타낼 

수 있다. 
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식 (1)에서   는 평균 연산자, 
F

 는 주어진 행렬의 

Frobenius norm 을 의미한다 [6]. 
 

B. LSTM 기반 채널 추정 방법 

파일럿이 전송되지 않은 데이터 심볼 구간에 대한 

채널 정보를 보간으로 얻었던 기존 채널 추정 방법과 

달리, 본 논문에서는 시계열 데이터 학습에 강점이 있는 

LSTM 으로 데이터 심볼 구간의 채널 정보를 예측한다. 

적용된 LSTM은 1개의 입력 layer, 3개의 hidden LSTM 

layer, 1 개의 출력 layer 로 구성된다. Hidden LSTM 

layer 의 각 셀은 입력, 망각, 출력 게이트를 통해 상태를 



제어하며, 게이트 출력과 셀 상태, 히든 상태는 각각 

sigmoid 와 hyperbolic tangent 와 같은 비선형 활성화 

함수로 계산된다. 모든 weight 와 bias 는 실수 영역에서 

정의되므로, 복소 채널 행렬은 실수부와 허수부를 분리해 

입출력 벡터를 구성한다. 학습 시 weight 와 bias 는 손실 

함수 MSE 를 최소화하는 방향으로 조정된다. 

시변 채널에서 MIMO 시스템의 채널을 추정하기 

위해서는 시간 영역과 공간 영역을 모두 고려해야 한다. 

본 논문에서는 하나의 LSTM 으로 두 영역의 특성을 

동시에 학습시키는 구조와 TN 개의 LSTM 으로 시간 

영역의 특성만 독립적으로 학습시키는 구조를 설계한다. 

첫 번째 구조에서는 파일럿 심볼을 통해 얻은 전체 추정 

MIMO 채널 행렬을 하나의 feature 로 묶어 입력으로 

사용하며, 데이터 심볼 구간에 해당하는 예측 MIMO 

채널 행렬을 출력으로 얻는다. 이러한 구조는 단순하게 

설계할 수 있지만, 시계열 데이터와 공간계열 데이터가 

섞여 존재하기 때문에 시간 상관성이 LSTM 에 충분히 

반영되지 않을 수 있다. 두 번째 구조는 전체 추정 

MIMO 채널 행렬을 각 송신 안테나에 해당하는 시계열 

데이터로 분리한 후 TN 개 LSTM 의 입력으로 사용하며, 

출력 역시 송신 안테나별 예측 채널로 얻게 된다. 이러한 

구조는 많은 LSTM 을 사용해야 해 복잡도가 높아지지만 

시간 상관성이 LSTM 에 더 효과적으로 반영될 수 있다. 

LSTM 기반 채널 추정 방법은 training 단계와 test 

단계로 나누어 동작한다. Training 단계에서는 모든 심볼 

구간에서 파일럿 심볼을 전송하며, LS 알고리즘을 이용해 

채널 정보를 얻는다. 모든 심볼 구간의 채널 정보를 

파일럿 심볼 구간과 데이터 심볼 구간으로 분리한 후, 

LSTM 학습을 위한 입출력으로 사용한다. Test 

단계에서는 파일럿 심볼 구간에서만 채널 정보를 얻으며, 

데이터 심볼 구간에서의 채널 정보는 training 단계에서 

충분히 학습된 LSTM 으로 예측한다. 
 

C. 실험 결과 

MIMO 시스템을 위한 LSTM 기반 채널 추정 방법들의 

성능을 구조에 따라 비교하기 위해 모의실험을 

수행하였다. 4 4 , 8 8  MIMO 시스템에서 사용자의 

이동 속도가 120 km/h 인 시변 채널을 가정하였으며, 

파일럿 심볼간의 간격은 20 으로 설정하였다. 

그림 1 은 하나의 LSTM 을 사용한 구조와 TN 개의 

LSTM 을 사용한 구조의 NMSE 성능을 signal-to-noise 

ratio (SNR) 변화에 따라 나타낸 것이다. 4 4  MIMO 

시스템의 경우, 여러 개의 LSTM 을 사용한 구조가 

하나의 LSTM 을 사용한 구조보다 낮은 NMSE 를 

보였지만 그 차이가 크지 않았다. 하지만, 8 8  

MIMO 시스템에서 하나의 LSTM 을 사용한 구조의 채널 

추정 성능이 크게 열화된 반면 여러 개의 LSTM 을 

사용한 구조는 4 4  MIMO 시스템과 거의 동일한 

NMSE 성능을 유지하였다. 이를 통해 여러 영역의 

특성을 동시에 학습하는 방식이 LSTM 기반 채널 추정 

방법에 적합하지 않음을 알 수 있다. 

 

Ⅲ. 결 론  

본 논문에서는 시변 채널에서 MIMO 시스템을 위한 

LSTM 기반 채널 추정 방법들을 설계하고, 구조에 따른 

NMSE 성능을 비교하였다. 특히, 여러 개의 LSTM 으로 

독립적인 시계열 데이터를 활용하는 구조가 MIMO 

시스템에서의 채널 추정에 적합함을 검증하였다. 

하지만 massive MIMO 시스템에서 송신 안테나의 수 

 
그림 1. 채널 추정 NMSE 성능 

만큼 LSTM 을 사용하는 것은 복잡도 및 연산 시간 문제 

등으로 인해 현실적이지 않다. 향후에는 제한된 수의 

LSTM 을 활용해 massive MIMO 시스템의 채널을 

추정하는 방향으로 연구를 확장할 계획이다. 
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