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요 약
본논문은 Open Radio Access Network (O-RAN) 구조에서슬라이스분류를초저지연으로실현하기위해, 특징선택기법이통합된 dApp 기반프레임
워크를제안하였다. 5G 네트워크의대표트래픽유형인초고신뢰·저지연통신은 10ms 이하의초저지연, 99% 이상의초고신뢰서비스를요구한다. 제안한
dApp 기반프레임워크는 10ms 이하의실시간분류를가능하게하여 rApp과 xApp의 지연한계를보완하고초저지연처리를실현한다. 또한, 상호정보량
을이용한특징선택을적용하여입력데이터의차원을축소함으로써, 경량화된트래픽분류기를설계할수있다. 실제 5G 트래픽데이터를활용한실험을
통해 소수의 주요 특징만으로도 0.99 이상의 정확도와 2.6ms 이하의 추론 지연을 보여 저지연성과 고신뢰성을 동시에 만족함을 확인하였다.

Ⅰ. 서 론

5G와 6G 네트워크에서는 데이터 기반의 적응적 인공지능을 활용한 지

능형자동화가필수적 요소로부상함에 따라, RAN 구조에 인공지능을통

합하려는 Artificial Intelligence-Radio Access Network (AI-RAN)이 등

장하였다. AI-RAN을 실현하기 위해 개방적이고 상호운용 가능한 Open

RAN (O-RAN)이 제시되었다[1]. 5G는 초고속, 초연결, 초저지연을 목표

로 하며, 이에 따라 향상된광대역 이동통신(enhanced mobile broadband,

eMBB), 대규모 사물통신(massive machine type communications,

mMTC), 초고신뢰·저지연 통신(ultra-reliable and low-latency

communications, URLLC)으로 네트워크 슬라이스 트래픽 유형이 구분된

다. 이러한유형들은제한된지연시간내에서신속한자원스케줄링과처리

가요구된다. 특히 URLLC와일부 mMTC 서비스는 10ms 이하의초저지연

이보장되어야하며, 99% 이상의높은신뢰도를확보하는것이필수적이다.

기존 O-RAN의 비실시간/근실시간 무선 접속망 지능형 컨트롤러

(non/near-real-time RAN Intelligent Controller, non/near-RT RIC)의

폐루프지연범위는각각 1s 이상과 10-1000ms이다. 따라서, 이러한 구조

에서는 10ms 이하의초저지연요구를충족하기 어렵다. 이를 보완하기위

해, RAN의 중앙부(Central Unit, CU), 분배부(Distributed Unit, DU)에

적용 가능한 10ms 이하의 지연 범위를 가지는 제3자 어플리케이션 dApp

이 제안된 바있다[2]. 트래픽별스케줄링을 위해서는신속하고정확한트

래픽분류가선행되어야 하며[3], 이를 위한 dApp 개발이 필요하다. 특히,

DU는 RIC에 비해 더욱한정된자원에서 동작하기 때문에, 데이터 분석을

기반으로 자원 효율성과 경량성을 고려할 수 있는 설계가 요구된다[3].

본 논문에서는 dApp 기반 슬라이스 트래픽 분류 프레임워크에 특징 선

택(feature selection) 기법을통합하여, 핵심적인입력변수만을활용한경

량화된 모델을 설계한다. 이를 통해 머신러닝 기반 슬라이스 분류 실험에

서 빠른 추론 속도와 높은 정확도를 동시에 달성함을 확인한다.

Ⅱ. dApp 기반 트래픽 분류를 위한 구조 및 데이터 분석

A. O-RAN 구조에서의 dApp 동작 프레임워크

제안하는 dApp 기반 슬라이스 트래픽 분류가 적용된 O-RAN 구조는

그림 1과 같다. 사용자 단말(User Equipment, UE)에서 발생한

그림 1. 슬라이스 트래픽 분류를 수행하는 dApp이 적용된 O-RAN 구조

트래픽 흐름은 무선부(Radio Unit, RU)에서 수집되어 프론트홀(Front

haul)을 통해 DU로 전송된다. 전달되는 데이터  ∈ℝ×는 개의 시
점 동안 수집된 개의 특징  ∈ℝ     으로 구성되며, 각
시점의 인스턴스는  ∈ℝ      으로 표현된다. 수집된 데이
터는 O1 인터페이스를 통해 non-RT RIC으로 전달된다. 본 논문에서는

rApp 내 데이터 분석 함수 ·를 적용함으로써, 주요 특징  ≤개
에대한 인덱스셋 을도출한다. 이렇게 선별된특징을 이용하여  로부
터차원축소된데이터  ′∈ℝ를매핑할수있다. 머신러닝기반트래픽
분류기는오프라인(offline)으로학습되며, 학습된모델과 은O1 인터페이
스를통해 DU로배포된다. 따라서, dApp은 학습된분류기와 을통해차
원이 축소된 온라인(online) 데이터  ′의 트래픽 유형을 실시간으로 분류
할 수 있다.

B. 데이터 분석 기반 중요 특징 선택

본연구에서는성능저하없이 입력 데이터의 차원을 축소하기위해상

호 정보량(mutual information)[4]을 활용한다. 상호 정보량은 한 확률 변

수에 대한 정보가 다른 확률 변수의 불확실성을 감소시키는 정도를 통계

적으로 나타내는 지표로, 각 특징  가 트래픽 유형 라벨 ∈ℝ의구분
에 미치는 기여도 를 다음과 같이 정량화할 수 있다.

 ∈ ∈ℱ
 log   (1)

··는 두 변수 사이의 결합 확률 질량 함수(joint probability mass
function, joint pmf), ·는 한 변수의 주변 확률 질량 함수 (marginal



그림 2. 특징별 트래픽 유형과의 상호 정보량

pmf)를 의미하고, 특징의확률변수 는확률변수값집합 ℱ 내의값을,
라벨의 확률 변수 는 집합  내의 값을 가진다. 기여도측정 이후, 계산
된  값에니들(Kneedle) 알고리즘[5]을적용하여, 트래픽분류에유의미
한 상관성을 가지는 상위 개의 특징들을 선별한다.
Ⅲ. dApp 기반 트래픽 분류 실험

본 연구에서 사용한 데이터셋은 Colosseum O-RAN COMMAG[6]이며,

대규모 무선 에뮬레이터인 Colosseum을 통해 수집되었다. 이는 물리,

MAC 계층의경로손실(pathloss), 참조신호수신전력 (Reference Signal

Received Power), 하향링크변조코딩구성(downlink Modulation Coding

Scheme) 등이 포함된 의 특징으로 구성된 사용자 데이터이며,

eMBB, mMTC, URLLC 총 3개의 슬라이스트래픽유형을가진다. 제안한

dApp의 유효성을검증하기 위해 eXtreme Gradient Boosting (XGBoost)[7],

Support Vector Machine (SVM)[8], -Nearest Neighbors (-NN)[9]을
이용해 트래픽 분류를 수행하였다. 각각 early stopping, radial basis

function (RBF) 커널,   가적용되었다. 성능지표는정밀도와재현율을
모두 고려하기 위해 F1-score가 사용되었다.

그림 2는 각 특징에대한 상호정보량값을나타낸 것이다. 높은 상관성

을 보이는 특징들은 전체 중 일부에 불과하며, 상호 정보량이 0인 특징을

제외하면오직 12개의 특징만 의미 있는정보를가진다. 또한, 상대적으로

높은 상관성을 가진 특징과 그렇지 않은 특징 간의 대비가 뚜렷한 것은

트래픽구분에 실질적으로기여하는주요특징이 일부에집중됨을시사한

다. 계산된 상호 정보량 값들을 통해 니들 알고리즘 적용 결과, 상위 6개

(  )의 특징이 가장 높은 기여도를 가진 것으로 선별되었다.
그림 3은 선택된 특징의 개수 에 따른 모델별 트래픽 분류 성능으로,
선별된 6개의특징만사용한경우, 모든모델이전반적으로높은성능을보

이는 것을 확인할 수 있다. 그중에서도 XGBoost, -NN은   부터  까지의모든부분집합에서 0.98 이상의안정적인성능을 나타낸다.
특히, XGBoost는 일관적으로 0.99 이상의 정확도를 달성함으로써, 트래픽

서비스의 신뢰성 보장 기준을 만족한다. 반면, SVM은 비교적 낮은 성능

을 기록하여, 고신뢰 환경에서의 실시간 분류에는 다소 한계가 있음을 확

인할수있다. 또한, 모든모델에걸쳐   까지특징개수가감소하여도
0.90 이상의 높은 성능이유지되어, 복잡한고차원 입력 없이도소수의핵

심적 특징만으로 효과적인 트래픽 분류를 실현할 수 있음을 보여준다.

표 1은 ∈  에 따른 모델별 추론 지연 시간을 측정한 결과이
며, 테스트 데이터셋 내의 각 인스턴스의 평균 추론 시간으로 계산되었다.

모든 에서 추론 지연이 10ms 이하로 측정되어, 트래픽서비스 및 dApp
의 지연 요구를 충족함으로써 저지연성 유효성이 확인되었다. 특히, 최고

성능 모델인 XGBoost는 최대 2.60ms의 지연 시간으로, 실시간 처리에 충

분히 빠른 추론 속도를 보였다. 이러한 결과는 dApp이 트래픽 분류를 신

속히 수행함으로써, 이후 스케줄링 및 자원 제어의 전체 지연을 단축하고

O-RAN 제어 프로세스의 응답 효율을 향상시키는 데 기여할 수 있다.

Ⅳ. 결론

본논문에서는O-RAN구조에서의실시간트래픽처리를위한dApp 기반

초저지연트래픽분류프레임워크를제안하였다. 제안한방법은O-RAN아

키텍처를 준수하는 dApp의 적용 구조와 데이터 흐름을 설계하고, 데이터

그림 3. 특징 개수()에 따른 모델별 트래픽 분류 성능
XGBoost SVM -NN   0.84 ± 0.50 0.64 ± 0.01 0.60 ± 0.01   1.15 ± 0.02 0.41 ± 0.00 0.60 ± 0.01   2.60 ± 0.46 0.53 ± 0.01 0.39 ± 0.45

표 2. 특징 개수()에 따른 모델별 추론 지연 시간 (ms)
분석기반의특징선택을통해효율적으로높은분류성능을유지하도록하

였다. 실제 5G O-RAN 트래픽 데이터를활용한 실험 결과, 머신러닝 기반

트래픽분류기들은전반적으로높은성능과낮은지연을달성하였으며, 특

히 XGBoost는 0.99 이상의 정확도와 2.6ms 이하의 추론 지연을 기록하며

dApp과 URLLC의요구조건을모두충족하였다. 이는머신러닝기반 dApp

이 near-RT RIC보다 낮은 지연 범위에서도 안정적이고 효율적인 트래픽

분류가가능함을보여준다. 향후, 제안한 트래픽분류 dApp과 연계된스케

줄링 dApp 구조를논의함으로써, 보다통합적이고구체적인 dApp 기반트

래픽 제어 및 자원 관리 프레임워크로 확장할 수 있을 것으로 기대된다.

ACKNOWLEDGMENT

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획
평가원의 지원(No. 2021-0-00739, 분산/협력AI 기반 5G+ 네트워크 데이
터 분석 기능 및 제어 기술 개발)과 한국연구재단의 지원(No.RS-2025-
16066913, AI-RAN 내 분산형 자율 제어에 관한 연구 및 디지털 트윈 기
반 검증)을 받아 수행된 연구임.

참 고 문 헌

[1] O-RAN Alliance, “Towards an Open and Smart RAN,” O-RAN
Alliance, White Paper, Oct. 2018.

[2] O-RAN nGRG, “dApps for Real-Time RAN Control: Use Cases
and Requirements,” Research Report. RR-2024-10, Oct. 2024.

[3] Haque, M. E., et al., “A Survey of Scheduling in 5G URLLC and
Outlook for Emerging 6G Systems,” IEEE Access, vol. 11, pp.
34372-34396, 2023.

[4] Shannon, C. E. “A Mathematical Theory of Communication,” The

Bell Syst. Tech. J ., vol. 27, no. 3, pp. 379-423, 1948.

[5] Satopaa, V., et al., “Finding a “Kneedle” in a Haystack: Detecting
Knee Points in System Behavior,” in Proc. ICDCSW 2011, 2011, pp.
166-171.

[6] Bonati, L., et al., “Intelligence and Learning in O-RAN for
Data-driven NextG Cellular Networks,” IEEE Commun. Mag., vol.
59, no. 10, pp. 21-27, Oct. 2021.

[7] Chen, T., and Guestrin, C. “XGBoost: A Scalable Tree Boosting
System,” in Proc. SIGKDD 2016, 2016, pp. 785-794.

[8] Cortes, C., and Vapnik, V. “Support-Vector Network,” Machine
Learning, vol. 20, no. 3, pp. 273-297, 1995.

[9] Silverman, B. W., and Jones, M. C., “E. fix and j.l. hodges (1951): An
important contribution to nonparametric discriminant analysis and
density estimation,” Int. Stat. Rev., vol. 57, no. 3, pp. 233-238, 1989.


