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요 약  

 
본 논문은 Airsim 시뮬레이션 환경에서 획득한 드론 센서의 시퀀스 데이터를 설계 및 수집하고 예측 모델로 검증하여 

유도조종 상황에서의 미래 목표 궤적 예측 가능성을 검증하였다. 데이터셋은 요격체와 목표물 간 초기 IMU, GPS. LiDAR 

정보를 3초 동안 관측한 시계열 데이터로 구성되며, 수집된 데이터를 기반으로 예측 모델을 이용하여 이후 3초 및 5초 

뒤의 목표물의 상대 위치를 예측한다. 총 1,000개의 에피소드를 수집하고 데이터 증강을 통해 약 3,500개의 학습 샘플을 

확보하였다. 다층 퍼셉트론(MLP), LSTM, Transformer 모델을 비교한 결과, 단순 상수속도 연산(Constant Velocity, CV) 

기법은 5초 후 위치 예측에서 평균 오차가 7.8 m인 것과 비교하여 Transformer 모델은 0.91m 수준의 RMSE를 

기록하였다. 본 연구는 시뮬레이션을 기반으로 설계한 다중센서 시퀀스 데이터를 활용하여 시퀀스 학습 모델이 기존 단순 

운동 모델을 대체할 수 있으며, 향후 머신러닝 기반 유도조종 알고리즘개발에 활용될 수 있음을 보여준다. 

 

Ⅰ. 서 론  

유도조종 등 국방 기술 분야에서는 인공지능(AI) 기반 

의사결정과 예측이 미래 핵심 기술로 주목받고 있다. 

그러나 실제 비행 환경에서 충분한 데이터를 수집하는 

것에는 한계가 있다. 이에 따라 시뮬레이터 기반 학습 

데이터 수집이 대안방안으로 제시되고 있으며 AirSim 과 

같은 고정밀 환경은 비행체의 운동 환경에서의 IMU, 

GPS, LiDAR 등 현실적인 센서 데이터를 제공할 수 

있다.[1] 

기존에는 상수속도(CV)와 같은 단순 모델이 주로 

사용되었으나, 장기 예측에서는 오차가 급격히 커지는 

한계가 있다[2]. 이에따라 최근에는 LSTM, 

Transformer 등 시계열 학습 모델을 이용한 궤적 예측 

연구가 진행되고 있다[3]. 

본 논문에서는 AirSim 시뮬레이션을 통해 학습에 

적용 가능한 궤적 센서 데이터를 설계 및 수집하고 

다양한 예측 모델을 이용하여, 단순 연산 기반 기법을 

넘어 예측 모델을 이용한 학습 기반 미래 예측이 

유도조종알고리즘 발전에 기여할 가능성이 있는지 

평가한다. 

 

Ⅱ. 본론  

Ⅱ-1.  데이터셋 구축 

본논문에서는 Airsim 시뮬레이터를 이용하여 추적-

회피 시나리오를 구성하였으며 요격체는 내장된 IMU, 

GPS, LiDAR 센서의 초기 3초(0.1 s 샘플링. 30 steps) 

데이터와 예측 시점 τ에서 목표물의 위치를 수집한다. 

시뮬레이션은 1,000회 진행하였으며. 이후 데이터 증강 

기법으로 최종 3,500개의 학습 샘플을 확보하였다. 

Figure 1. Airsim Simulation. (a) Initial State; (b) 

Tracking; (c) Interception. 
 

Ⅱ-2. 학습 모델  

Figure 2. Dataset Structure 

 

본논문에서는 단순 CV 기법과 학습 기반 예측 모델 

(MLP, LSTM, Transformer)을 비교하여 미래 목표 위치 

예측 성능을 비교분석하였다. Figure 2와 같이 



요격체에서 수집한 시계열 데이터를 예측 모델에 

입력하고 3 또는 5초 후 목표물의 예측 위치를 

출력한다. 앞서 수집한 테스트셋을 각 비교 모델에서 

성능 평가를 한 결과는 Table 1, Table 2와 같다. 

 

Table 1. Prediction Preformance Comparison(τ=3) 

Model RMSE(m) MAE (m) 
Hit@0.5

m (%) 

Hit@1.0

m (%) 

CV 4.20 3,50 0.0 0.0 

MLP 1.85 0.80 9.3 31.8 

LSTM 8.89 1.69 0.0 0.0 

Trans- 

former 
1.47 0.41 29.8 63.6 

 

Table 2. Prediction Preformance Comparison(τ=5) 

Model RMSE(m) MAE (m) 
Hit@0.5

m (%) 

Hit@1.0

m (%) 

CV 7.80 6.20 0.0 0.0 

MLP 5.42 2.10 2.0 10.5 

LSTM - - - - 

Trans- 

former 
0.91 0.41 41.0 64.0 

 

성능 평가 결과 τ = 3, τ = 5인 모든 시퀀스 길이 

조건에서 Transformer 모델이 최고 성능을 보였다. τ =3 

조건에서 RMSE = 1.47 m로 CV 대비 약 65 % 오차 

감소를 확인했으며, MAE도 0.41 m로 MLP 대비 약 

49% 감소하였다. 또한 Hit@0.5 m = 29.8 %, Hit@1.0 m 

= 63.6 %로, MLP 보다 각각 약 3.2배. 2배 높은 근접 

예측률을 확인했다. τ =5일 때 Transformer 모델 기준 

RMSE 0.91 m, MAE 0.41 m로 기본 CV 모델 및 MLP 

대비 각각 88%, 81%의 오차 감소를 확인하였다. 특히 

Hit@0.5 m = 41%. Hit@1.0m = 64%로, τ = 3 조건 대비 

근접 정확도가 향상된 것을 확인하였다. 이를 통해 

Transformer가 다른 비교모델과 비교했을 때 가장 균형 

잡힌 성능과 일관된 정학도를 보였음을 확인할 수 

있었다. 한편 LSTM은 해당 연구에서는 수렴이 

불안정하여 유의미한 결과를 획득하지 못하였으며 

데이터셋의 크기 및 정규화 조건을 수정 등 추가적인 

튜닝으로 보완 가능할 것으로 보인다. 또한 MLP는 τ = 

3일 때의 단기 패턴 학습에서는 상대적으로 유효한 

결과를 보였으나 시퀀스 길이 증가에 따라 성능이 

하락하는 것을 확인하였다.  

 

 

Ⅲ. 결론  

본논문에서는 AirSim 시뮬레이터를 활용하여 센서 

기반 시퀀스 데이터셋을 구축하고, 여러 예측 모델을 

비교하여 목표물의 미래 궤적 예측 성능을 평가하였다. 

단순 운동 모델인 CV는 장기 예측에서 한계를 보였으며. 

학습 기반 모델인 Transformer 에서는 64.0 %의 근접 

예측률을 확인하였다. 실제 상황에 적용하기에는 부족한 

정확도이지만 시뮬레이션 기반 학습 데이터의 수집 및 

학습만으로도 단기 패턴의 시계열 예측이 가능함을 

확인할 수 있었다. 이러한 결과는 향후 실시간성이 

요구되는 AI 기반의 유도조종알고리즘의 실제 적용 

가능성을 보여주며 이를 위한 향후 실제 환경 변동성을 

포함한 데이터의 구축 및 AI 기반 제어 연구가 가능할 

것으로 보인다. 
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