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Abstract—Variational Quantum Algorithms (VQAs) face the
well-known barren plateau problem, where gradients vanish
exponentially with qubit number or circuit depth, impeding
optimization. Prior works show that local cost functions mitigate
this issue in ideal, noiseless settings. However, near-term quantum
devices suffer from sampling noise, gate noise, and decoherence,
raising the question: how robust are local cost landscapes under
realistic noise? We investigate this empirically using a hardware-
efficient ansatz, parameter-shift gradients, and a custom noise
model with depolarizing, thermal relaxation, and readout errors.
By sweeping circuit depth and qubit count, we plot the local cost
landscape in noiseless vs. noisy cases (10,000 shots). Our results
reveal progressive flattening of local cost contours under noise,
delineating a practical boundary where trainability collapses.
This empirical map complements existing theory on noise-
induced barren plateaus and informs ansatz design for noisy
intermediate-scale quantum (NISQ) devices.

I. INTRODUCTION

Variational Quantum Algorithms (VQAs) combine param-
eterized quantum circuits with classical optimization to solve
problems in chemistry, optimization, and machine learn-
ing [1]–[4]. Their training involves computing gradients of
cost functions with respect to circuit parameters. However,
these gradients can vanish significantly with increased system
size or circuit depth, posing a major challenge to effective
optimization [5].

We empirically study the trainability of local cost functions
under realistic noise conditions, using parameter-shift gradient
evaluations, a hardware-efficient ansatz, and a custom Qiskit
noise model. Our main contributions include:

• Detailed contour maps of local cost gradients as a func-
tion of qubit number and circuit depth, contrasting the
noiseless and noisy regimes.

• Quantitative characterization of the trainability boundary,
highlighting the impact of noise-induced gradient sup-
pression on variational optimization.

This work advances the understanding of VQA performance
limitations in realistic noisy quantum hardware environments.

II. METHODOLOGY

We employ a hardware-efficient ansatz consisting of L
layers acting on an n-qubit register. Each layer applies se-
quential single-qubit rotations about the X , Y , and Z axes
on every qubit, with rotation angles parameterizing the circuit.
These are followed by an entangling sublayer composed of
alternating controlled-NOT gates arranged according to the
device connectivity. The rotation parameters are independently

initialized from a uniform distribution over [0, 2π]. This ansatz
balances expressibility and hardware compatibility by limiting
circuit depth while creating entanglement across qubits.

Only the local cost function is considered in this work, as
prior research has established that local cost functions exhibit
significantly improved trainability compared to global cost
functions, particularly in mitigating barren plateau phenom-
ena [6].

Clocal(θ) =

n∑
i=1

⟨Zi⟩, (1)

The local cost function is defined as the sum of expec-
tation values of single-qubit Z operators, omitting the usual
normalization factor for convenience. Although this alters the
absolute scale of the cost, it preserves the qualitative features
relevant for assessing trainability and noise effects, and aligns
with the implementation used in the numerical experiments.

A. Noise Model

A custom noise model is constructed in Qiskit incorporat-
ing several key noise sources relevant for realistic quantum
hardware. Single-qubit depolarizing errors are modeled with a
probability p1 = 10−3, while two-qubit depolarizing errors
occur with probability p2 = 10−2. Thermal relaxation is
included with characteristic times T1 = 80µs and T2 = 60µs,
and gate durations are set to 35ns for the u1 gate, 160ns
for the u2 gate, and 400ns for the controlled-NOT gate.
Measurement noise is captured through readout error channels
with probability pro = 0.02. The noise processes are applied
after every quantum gate operation, and measurement noise is
modeled via bit-flip channels acting on the readout outcomes.

B. Gradient Estimation

Gradients are computed using the parameter-shift rule:

∂C(θ)

∂θi
=

1

2

[
C(θi +

π
2 )− C(θi − π

2 )
]
, (2)

with 10,000 measurement shots per expectation to approximate
hardware sampling.

For each (n,L) pair, 32 random parameter sets are sampled,
their gradients are calculated, and the variance is recorded.
The reported values correspond to the mean variance over 10
random initializations.



Figure 1. Mean gradient variance as a function of circuit depth (L) and number of qubits (n). Left panel shows results for noiseless simulations, while
the right panel depicts noisy simulations with 10,000 shots. The color scale represents the magnitude of the mean gradient variance, with flattening regions
indicating the onset of barren plateaus.

III. RESULTS

Figure 1 compares the mean gradient variance for the local
cost function as a function of circuit depth (L) and qubit
number (n) under both noiseless (left panel) and noisy (right
panel) conditions. In the noiseless case, the gradient landscape
retains contrast across moderate depths and system sizes,
with vanishing gradients emerging only gradually as number
of qubits and depth increases. This behavior indicates that
local cost functions can delay the onset of barren plateaus,
maintaining trainability even as circuit complexity grows under
ideal conditions.

When noise is introduced, the gradient variance diminishes
rapidly beyond moderate depths and qubit counts, produc-
ing flattening and barren plateaus at smaller system sizes
compared to the noiseless case. Hardware noise therefore
accelerates plateau formation and negates much of the robust-
ness provided by local cost functions, highlighting that noise-
induced barren plateaus remain a fundamental limitation on
the practical scalability of variational quantum algorithms in
current NISQ devices.

IV. CONCLUSION

The empirical analysis conducted in this work highlights
the nuanced role of local cost functions in variational quan-
tum algorithms under realistic noise conditions. While lo-
cal costs demonstrate robust gradient behavior and mitigate
barren plateau effects in noiseless simulations, the inclusion
of hardware-relevant noise significantly accelerates gradient
vanishing, limiting trainability at shallower circuit depths and
smaller system sizes. These findings underscore the critical
impact of noise on the scalability of variational algorithms

and the necessity for continued development of noise-resilient
cost function designs and error mitigation strategies to advance
practical quantum computing on near-term devices.
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