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요 약 
최근 넓은 서비스 커버리지와 저지연 특성으로 인해 저궤도(low earth orbit, LEO) 위성 통신이 주목받고 있다. 

한편, 전송률 분할 다중접속기술(rate-splitting multiple access, RSMA) 기법은 공유 메시지와 개인 메시지를 병렬로 

전송하여 전송 효율을 향상시키는 기술이다. 따라서 본 논문에서는 RSMA 기법이 적용된 LEO 위성 통신 시스템에서 

심층 신경망(deep neural network, DNN) 구조를 활용한 머신러닝 기반 전력 분배 기법을 제안한다. 

     

I. 본론 

본 논문에서는 𝑁𝑡 개의 uniform planar array (UPA) 

안테나를 장착한 하나의 저궤도 위성이, 각각 하나의 

안테나를 갖는 두 명의 사용자에게 RSMA 기법을 통해 

동시에 서비스를 제공하는 시스템을 고려한다. 이때, 

송신 신호는 다음과 같이 표현된다.  

𝐱 =  √𝜆𝑐𝑃𝐰𝑐𝑠𝑐 + √𝜆1𝑃𝐰1𝑠1 + √𝜆2𝑃𝐰2𝑠2,            (1) 

여기서 𝜆𝑐 , 𝜆1, 𝜆2 는 각각 공유 전력 분배 계수와 두 

사용자에게 할당된 전력 분배 계수를 나타내며, 𝜆𝑐 + 𝜆1 +

 𝜆2 = 1을 만족한다. 또한 𝐰𝑐 ∈  ℂ𝑁𝑡×1과 𝐰1, 𝐰2 ∈  ℂ𝑁𝑡×1는 

각각 공유 프리코딩 벡터와 두 사용자에게 할당된 개인 

프리코딩 벡터를 의미한다. 개인 프리코딩 벡터는 

maximum ratio transmission (MRT) 기반으로 설계되며, 

공유 프리코딩 벡터는 두 사용자 채널 벡터의 정규화된 

합으로 정의된다. 또한 𝑠𝑐 , 𝑠1, 𝑠2 는 각각 공유 메시지와 두 

사용자에게 할당된 개인 메시지를 의미한다. 이때, 

위성으로부터 전송된 신호를 수신한 사용자 𝑘 의 수신 

신호는 다음과 같다. 

 y𝑘 = 𝐡𝑘
†𝐱 +  n𝑘 ,    𝑘 ∈ {1, 2},                          (2) 

여기서 𝐡𝑘 ∈  ℂ𝑁𝑡×1 는 위성과 사용자 𝑘  사이의 채널 

벡터를 의미하며, 𝑛𝑘는 평균이 0 이고 분산이 1 인 복소 

가우시안 잡음을 나타낸다. 일반적으로 RSMA 

기법에서는 각 사용자가 먼저 공통 메시지를 디코딩하고, 

successive interference cancellation (SIC) 기법을 

이용하여 공통 신호를 제거한 후 자신의 개인 메시지를 

복호한다. 따라서 사용자 𝑘 가 공통 메시지를 디코딩할 

때의 signal to interference plus noise ratio (SINR)는 

다음과 같다. 

 γ(𝑐,𝑘) = 𝜆𝑐𝑃|𝐡𝑘
†𝐰𝑐|

2
(∑ 𝜆𝑖𝑃|𝐡𝑘

†𝐰𝑖|
22

𝑖=1
+ 1)⁄ .        (3) 

공통 신호는 모든 사용자가 복호 가능해야 하므로, 공통 

전송률은 𝑅𝑐 =  min {log2(1 +  γ(𝑐,1)), log2(1 +  γ(𝑐,2)) } 로 

표현된다. 또한 공통 신호를 제거한 후 사용자 𝑘의 개인 

신호에 대한 SINR 은 다음과 같다. 

 γ(𝑝,𝑘) = 𝜆𝑘𝑃|𝐡𝑘
†𝐰𝑘|

2
(∑ 𝜆𝑖𝑃|𝐡𝑘
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22
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따라서 시스템의 총 전송률 (sum rate)은 다음과 같다. 

  𝑅𝑠𝑢𝑚 =  𝑅𝑐 + ∑ log2(1 +  γ(𝑝,𝑘))2
𝑘=1 .                 (5)  

그러나 최적의 전력 분배 계수 조합을 찾는 과정은 𝜆𝑐 +

𝜆1 +  𝜆2 = 1 의 제약조건 하에서 모든 가능한 조합을 

탐색해야 하므로 높은 계산 복잡도가 요구된다. 이에 본 

논문에서는 각 전력 분배 계수를 𝜇(0 ≤ 𝜇 ≤ 1)  간격으로 

나누어 격자 탐색 (grid search)을 수행하였다. 따라서, 

최선의 전력 분배 계수 조합은 다음과 같이 정의된다. 
(𝜆𝑐

∗ , 𝜆1
∗ , 𝜆2

∗ )  =   argmax
𝜆𝑐,𝜆1,𝜆2 ∈{0,𝜇,2𝜇,…,1}

𝑅𝑠𝑢𝑚(𝜆𝑐 , 𝜆1, 𝜆2) .       (6)  

그러나 격자 탐색은 𝜇가 작아질수록 탐색해야 할 조합의 

수가 급격히 증가하여 계산 복잡도가 크게 상승하는 

한계가 있다. 이에 본 논문에서는 DNN 을 활용하여, 

신호 대 잡음비, 공통 신호 및 개인 신호에 대한 

사용자별 채널 이득, 그리고 사용자 간 간섭 성분을 

토대로 최선의 전력 분배 계수 조합을 예측하고자 한다. 

 
그림 1. 평균 총 전송률 (𝜇 = 0.1, 𝑁𝑡 = 16 ) 

 

그림 1 은 제안하는 기법과 격자 탐색을 통해 최선의 

전력 분배 계수 조합을 찾는 기법, 그리고 기존 non-

orthogonal multiple access (NOMA) 및 orthogonal 

multiple access (OMA) 기법을 비교한 결과를 나타낸다. 

그림 1 을 통해 제안하는 기법이 반복적인 격자 탐색을 

수행하지 않고도, 유사한 수준의 성능을 달성함을 확인할 

수 있다. 
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