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요 약

본 연구는 배터리 제조공정의 탄소배출 특성을 정량적으로 분석하기 위해, 실측 공정 데이터를 활용한 데이터 기반 전과정평가
(Data-driven LCA) 및 인공지능(AI) 기반 예측모델을 구축하였다. 제조공정에서 수집된 주요 제어변수(온도, 회수율, 전류 등)를 활용하
여 XGBoost, Random Forest 등 회귀모델을비교한결과, XGBoost 모델이가장 높은예측성능(R²=0.93)을 보였다. 설명가능한인공지능
(XAI) 기법인 SHAP 분석을 통해 Drying 온도와 NMP 회수율이 탄소배출량에 가장 큰 영향을 미치는 변수로 도출되었으며, 감도분석
결과 두 변수의 ±10% 변화 시 배출량이 각각 +6.2%, −5.4% 변동함을 확인하였다. 본 연구는 평균 배출계수 중심의 정적 LCA를 넘어,
실측 데이터를 기반으로예측·설명이 가능한동적 LCA 구현의가능성을제시하며, 향후 디지털 트윈기반 실시간탄소관리 시스템으로의
확장을 기대할 수 있다.

Ⅰ. 서 론

전기차(Electric Vehicle, EV) 산업의 급속한 성장과 함께 리튬이온배터

리(LIB, Lithium-ion Battery)의 생산량이 급증하고 있다. 배터리는 차량

전체의 환경영향 중 가장 큰 비중을 차지하며, 특히 제조공정에서의 에너

지 사용과 용매 회수 과정에서 상당한 탄소배출이 발생한다 [1]. 따라서

배터리 제조단계(Gate-to-Gate)는 전주기(Life Cycle) 중에서도 탄소 집

약도가높은구간으로평가되며, 이 단계의효율적관리와감축전략은탄

소중립형 공급망 구축의 핵심 과제로 인식되고 있다 [2][3].

기존의 전과정평가(LCA, Life Cycle Assessment)는 ISO 14040/14044,

ISO 14067 표준에 기반하여 원자재 채굴부터 재활용까지의 전주기 배출

량을 산정하는 데 초점을 맞추었다. 그러나 이러한 전통적 LCA는 평균

배출계수(Emission Factor)에 의존한 정적(static) 모델로, 실제 제조현장

의 시간·공정별 변동성을 충분히 반영하지 못하는 한계가 있다 [4][5]. 예

를 들어, Drying 온도, NMP(N-Methyl-2-Pyrrolidone) 회수율,

Formation 전류 프로파일 등세부 제어변수가 탄소배출에 미치는 정량적

영향은 명확히 규명되지 않았다. 이로 인해 LCA 결과가 현장 데이터와

괴리되거나, 공정 최적화에 직접 활용되기 어려운 한계가 존재한다.

최근에는 제조 데이터와 환경데이터를 융합한 데이터 기반

LCA(Data-driven LCA) 연구가 주목받고 있다 [6]. MES(Manufacturing

Execution System), EMS(Energy Management System) 등의 실시간

데이터를 활용해 공정별 에너지 사용 및 배출 특성을 정량적으로 평가하

는 접근이 가능해졌다. 특히 Catena-X와 같은 산업 데이터 공간(Data

Space) 기반 플랫폼은 공급망 전반의 탄소발자국(Product Carbon

Footprint, PCF)을 표준화된 형식으로 교환할 수 있는 환경을 제공하고,

이를 통해 동적 LCA(Dynamic LCA) 구현의 기반을 마련하고 있다 [7].

그러나 기존 연구는 주로 데이터 수집과 표준화에 집중되어 있으며, 공정

내부의 제어변수가 PCF 변동에 미치는 구체적 영향에 대한 분석은 제한

적이다. 이에 본 연구는 단순한 플랫폼 구축을 넘어, 실제 제조 데이터를

활용하여 AI 기반 탄소배출 예측모델(Data-driven Carbon Emission

Model) 을 구축하고 설명가능한 인공지능(XAI) 기법을 통해 주요 제어변

수(Key Control Variables)를 도출하고자 한다. 이를 위해 Random

Forest, XGBoost 등 회귀모델을활용하여 공정데이터와 PCF 간 관계를

학습하고, SHAP(SHapley Additive Explanations) 및 감도분석

(Sensitivity Analysis)을 통해 Drying 온도, NMP 회수율등 주요인자가

탄소배출량에 미치는 영향을 정량적으로 규명하였다.

본 연구는 배터리 제조공정의 탄소배출을 단순히 측정·보고하는 수준을

넘어, 데이터 기반 제어(Data-driven Process Control)와 디지털 트윈

(Digital Twin) 기반 실시간 감축전략으로 확장 가능한 지능형 탄소관리

시스템(Intelligent Carbon Management System) 구축 기초를 제시한다.

Ⅱ. 본론

2.1 데이터 기반 LCA와 디지털 전환

최근 산업 전반에서 디지털 트윈(Digital Twin), 데이터 공간(Data

Space), 인공지능(AI)을 결합한 데이터 기반 LCA(Data-driven LCA) 접

근이 활발히 시도되고 있다. 이는 제조 현장의 실시간 데이터를 기반으로

환경영향을 동적으로 산정함으로써, 기존 LCA의 정적 한계를 보완한다.

특히 배터리 제조공정에서는 MES(Manufacturing Execution System)와

EMS(Energy Management System)를 통해 전력소비량, 열사용량, 용매

회수율, 공정시간 등의데이터를 실시간으로수집할수 있다. 이러한 데이

터는 LCI(Life Cycle Inventory) 데이터베이스와 연동되어, 각 공정별 탄

소배출량을 다음과 같이 계산할 수 있다   × 
여기서  는공정 i의투입량(전력, 가스, 용매 등),  는 각투입요소에
대한 배출계수(Emission Factor, kg CO₂-eq/unit)이다. 이를 통해 공정

단위 탄소배출량이 실시간으로 산정되며, 배터리 제조 데이터와 LCA 모

델 간의 데이터 연계 구조 (Data Linkage Framework) 가 완성된다.



2.2 인공지능 기반 탄소배출량 예측모델

본 연구는 수집된 공정 데이터를 기반으로 AI 회귀모델(Regression

Model) 을 구성하여, 각 공정 제어변수가 탄소배출량에 미치는 영향을 예

측하였다. 예측 모델의 일반형은 다음과 같다:y = f(x₁, x₂, ..., xₙ)
여기서  는 공정 단위 탄소배출량(kg CO₂-eq/unit),는 제조공정의
제어변수(온도, 회수율, 전류, 속도 등)이다. 본 연구에서는 Linear

Regression, Random Forest, XGBoost 세 가지 모델을 비교하였다. 모델

학습에는 15,000건의 공정 데이터를 사용하고, 5-fold cross validation을

통해 성능을 검증하였다.

표1에서 보듯이 XGBoost 모델이 가장 높은 예측 정확도(R²=0.93)를 보였

으며, 비선형 관계를 효과적으로 학습함으로써 공정변수와 배출량 간의

복합적 상호작용을 잘 포착하였다.

2.3 주요 제어변수 도출 및 중요도 분석

학습된 XGBoost 모델에 대해 설명가능한 인공지능(Explainable AI,

XAI) 기법을 적용하여각 입력변수가 PCF 변동에미치는 상대적 영향도

를 분석하였다. SHAP(SHapley Additive Explanations) 값을 통해 변수

별 영향도를 정량화한 결과는 다음 표2와 같다.

2.4 감도분석 (Sensitivity Analysis)

각 제어변수를 ±10% 변화시켰을 때의 탄소배출량 변화율을 계산하여,

공정의 민감도(Sensitivity Index)를 다음 식으로 정의하였다.

 ∆ ∆
여기서 Δ는 변수 변화에 따른 배출량 변동, PCF0 는 기준 조건의 탄
소배출량이다. ​그림1은 각 변수의 ±10% 변화에따른 ΔPCF(%)를 시각화

한 결과를 보여준다. Drying Temperature가 +10% 상승할 경우 전체

PCF가 평균 +6.2% 증가하였으며, 이는 공정 내 열에너지 소비가 비선형

적으로 증가하기 때문이다. 반면, NMP Recovery Rate가 +10% 향상될

경우 −5.4% 감소하여, 용매 회수 효율이 높아질수록 간접 배출(Indirect

Emission)이 유의하게 저감되는 경향을 보였다. Formation Current의 증

가 또한 전력소비량 증가에 따라 +3.1%의 배출 증가를 유발하였고,

Coating Speed는 공정 효율 향상에 따라 −1.7% 감소 효과를 보였다.

Mixing Time의 변화는 상대적으로 작은영향을미쳤으며, 전체 변동폭은

±1% 내외로 제한적이었다. 이 결과는 Drying과 NMP 회수 공정이 전체

배출의주요결정요인임을의미하며, 특히 두 변수 간에는 상호보완적관

계가 존재한다. Drying 온도를 일정 수준 낮추고 NMP 회수율을 동시에

향상시키는복합제어시나리오를적용할경우, 전체 PCF를 감축할수있

는 것으로 분석되었다. 민감도 분석은 각 제어변수가 배터리 제조공정의

탄소배출량에 미치는 정량적 영향뿐 아니라, 향후 공정 최적제어

(Control-oriented Optimization) 설계에 활용 가능한 우선순위 변수

(High-impact Variables) 를 제시한다는 점에서 의미가 있다.​

그림 1 주요 변수에 대한 민감도 분석

(제어변수 10% 변화, 파란색은 감축효과, 빨간색은 배출증가를 의미)

Ⅲ. 결론

본 연구는 배터리 제조 데이터를 기반으로 인공지능(AI) 및 설명가능한

인공지능(XAI)을 활용하여 탄소배출량 예측모델을 구축하고, 주요 제어

변수를 도출하였다. 분석 결과, Drying 온도와 NMP 회수율이 탄소배출

에가장큰영향을미치는요인으로나타났으며, 감도분석을통해두변수

의 ±10% 변화 시배출량이 각각 +6.2%, −5.4% 변동함을 확인하였다. 이

러한결과는실제 제조공정에서의제어변수조정을통한 단기탄소감축의

가능성을 시사한다. 본 연구는 평균 배출계수 기반의 정적 LCA를 넘어,

실측 데이터를 활용한 예측–설명 가능한 데이터 기반 LCA 프레임워크

를 제시하였으며, 향후 디지털 트윈 및 데이터 공간 연계를 통한 실시간

탄소관리로의 확장이 기대된다.
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모델 R² RMSE (kgCO₂-eq/unit)Linear Regression 0.74 0.081Random Forest 0.91 0.036XGBoost 0.93 0.031

변수 중요도(%) 영향성Drying Temperature 29.6 ↑ (온도상승시배출증가)NMP Recovery Rate 25.3 ↓ (회수율상승시배출감소)Formation Current 17.8 ↑Coating Speed 10.4 ↓Mixing Time 6.7 ↑


