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요 약

졸음 운전과 음주 운전은 교통사고의 주요 원인으로, 이를 예방하기 위한 운전자 모니터링 시스템의 도입은 필수적이다. 그러나 카메라 영상 기반
방식은 음주 후의 외적인 변화가 개인차가 존재한다는 점에서 음주 상태를 탐지하는 데에 한계가 있으며, 기존 Frequency Modulated Continuous
Wave (FMCW) 레이더 기반 연구 또한 졸음 탐지에 국한되고 제한적인 파형 특징만을 사용해 왔다. 본 논문은 이러한 한계를 극복하기 위해 FMCW
레이더를 통해 생체신호의파형을 획득하고, 통계량과심박변이도 지표를포함한 복합적인 특징 벡터를구성하여머신러닝을 통해 비정상 상태를 분류
한다. 그 결과, 졸음 상태는 88.89%, 음주 상태는 92.86%의 정확도로 정상과 비정상 상태를 효과적으로 구분할 수 있음을 실험적으로 확인했다.

Ⅰ. 연구 배경 및 목적

졸음 운전 및 음주 운전과 같은 비정상 상태 운전은 교통사고의 주요
원인으로 지목된다. 경찰청 통계에 따르면 2021년부터 2023년까지
국내에서 발생한 졸음 운전 사고는 일평균 5.2건, 음주 운전 사고는
일평균 39건에 이른다 [1]. 이러한 사회적 문제에 대응하기 위해 2024년
10월부터 국내에 음주 운전 방지 장치 제도가 도입되고, 자율주행 기술
또한 대안으로 제시되고 있다. 그러나 음주 운전 방지 장치는 재범자를
대상으로 한 사후적 억제책이라는 한정성을 지니며, 현재 자율주행 기술
역시 완전 자동화에 이르지 못해 운전자의 개입이 불가피하다. 따라서
운전자의 상태를 실시간으로 감시할 수 있는 운전자 모니터링 시스템의
도입은 필수적이다.
현재 상용화된 운전자 모니터링 시스템은 주로 카메라 영상 기반
방식을 채택한다. 그러나 해당 방식은 갑작스러운 조명 환경 변화에
취약하고, 사생활 침해 문제가 있다. 특히, 음주 후의 외적인 변화는
개인차가존재하므로 카메라영상기반방식은 분명하게한계를드러낸다
[2]. 반면, 레이더 기반 방식은 생체신호를 측정할 수 있기에 카메라 영상
기반 방식의 구조적 한계를 효과적으로 극복할 수 있다. 또한, 기존
레이더 기반 운전자 모니터링 시스템 연구는 대부분 졸음 탐지에
국한되거나 호흡수 및 심박수와 같은 제한적인 파형 특징에만 의존하여
운전자의 복합적인 상태를 충분히 반영하지 못하며, 분류 성능 역시 약
85% 수준에 머무른다 [3].
본 연구는 이러한 한계를 극복하기 위해 Frequency Modulated
Continuous Wave (FMCW) 레이더를 통해 생체신호의 파형을 획득한
후, 통계량과심박변이도 지표를 포함한 특징 벡터를 활용한다. 이를 통해
카메라 영상 기반 방식으로는 탐지가 어려운 음주 상태를 포함한 비정상
운전 상태를 머신러닝 기법으로 분류하고자 한다. 또한, 정확도와
macro-F1 지표를 활용해 여러 머신러닝 모델의 성능을 정량적으로
비교·분석함으로써, 운전자 모니터링 분야에서 레이더 활용 가능성을
제시하고자 한다.

Ⅱ. 생체신호 추출 및 모델 학습

본 연구에서는 생체신호의 파형 데이터를 획득하기 위해, Texas
Instruments사의 IWR6843ISK mmWave를 사용한다. 해당 레이더는

그림 1. FMCW Radar를 활용한 생체신호 데이터 수집 환경.

60 ~ 64 GHz의 주파수 대역을 사용하므로 미세한 흉부 움직임을 위상
변화 형태로 정밀하게 감지할 수 있다. 거리 변화 ∆에 따른 위상 변화∆는 다음 식 (1)로 표현된다.

∆   ∆ (1)

중심주파수 62 GHz에 대한 파장 는 약 4.8 mm이므로, 식 (1)에 따라 1
mm의 거리 변화 시 약 144°의 위상 변화가 발생한다. 성인의 호흡과
심박으로 인한 흉부 움직임은 각각 4 ~ 12 mm, 0.1 ~ 0.5 mm이므로 위상
변화를 통한 생체신호 검출을 효과적으로 할 수 있다.
그림 1과 같이, 피험자의 흉부 정면 50 cm 위치에 레이더를 고정하여
1분간 데이터를 수집한다. 수집된 데이터는 정적 물체의 반사 성분을
제거하여 신호 대 잡음비를 높인다. 그림 2와 같이, Range Fast Fourier
Transform (Range FFT)을 적용하고 측정 시간 동안 각 Range
bin에서의 진폭의 누적합이 최대인 Range bin을 선택한다. 선택된 bin의
복소 신호에서 위상을 추출하고 위상 언래핑을 적용해 불연속을
보정한다. 이후 보정된 위상을 호흡 대역과 심박 대역의 대역통과 필터를
거쳐 두 신호로 분리하여 생체신호의 파형을 획득한다.
생체신호의 파형은 single-input single-output 방식으로 3개의 송신
안테나와 4개의 수신 안테나를 조합해 총 12개 채널에서 독립적으로
획득한다. 이상치로 인한 채널 간 편차를 고려하여 각 채널 파형으로부터



그림 2. 신호 처리 및 특징 추출 개요도.

계산된 호흡수와 심박수 중 중앙값을 기준으로 대표 파형을 선정한다.
우선순위가 같을 때는 채널 순서가 빠른 것을 선택한다. 최종적으로 대표
파형에서 통계량과 심박변이도 지표를 산출해 머신러닝의 입력인 특징
벡터를 구성한다. 그 후, 졸음 상태 분류 모델과 음주 상태 분류 모델은
각각 독립적으로 학습 및 평가가 이루어진다. 두 분류 모델의 학습을
위해서는 먼저 학습에 사용할 각각의 데이터 세트가 필요하다. 따라서
파형으로부터 추출한 특징과, 피험자의 상태 정보 레이블로, 졸음 상태
분류용 데이터 세트와 음주 상태 분류용 데이터 세트를 각각 구성한다.
그 후, 데이터 세트를 8:2 비율로 학습 데이터와 테스트 데이터로
분할한다. 학습 과정에서는 학습 데이터를 대상으로   의 Stratified-fold 교차검증을 수행하며 Grid Search로 최적 하이퍼파라미터
조합을 탐색한다. 이때 fold 별 성능의 평균이 최적 조합 선택의 기준이
된다. Stratified -fold는각 fold를 학습용데이터전체와동일한클래스
비율을 유지하도록 분할하는 방식으로, 클래스 불균형 상황에서도
안정적인 평가가 가능하며 과적합을 방지한다. 추가로 표준화는 fold 별
훈련 데이터의 평균과 표준편차를 사용하여 수행하고, 검증 데이터에도
동일한기준을 적용한다. 최종적으로각 모델은선택된하이퍼파라미터로
학습 데이터를 재학습한 뒤, 보류된 테스트 데이터로 성능을 평가한다.
평가 지표로는 정확도와 macro-F1을 사용한다. 정확도는 모델의
예측이 실제 정답과 일치한 데이터의 비율을 의미한다. macro-F1은 각
클래스를동일한 비중으로평가하여데이터불균형 상황에서도클래스간
성능의 균형을 요약하는 지표이다.

Ⅲ. 실험 결과 및 분석

본 연구에서는 졸음 상태 분류에 있어, 정상 샘플 44개와 졸음 샘플
43개로 구성된 데이터 세트를 사용한다. 음주 상태 분류에서는 동일한
정상 샘플과 22개의 음주 샘플을 사용한다. 표 1은 Support Vector
Machine (SVM), Logistic Regression, 그리고 Random Forest의 최종
분류 성능을 나타낸다. 먼저 졸음 상태 분류의 경우, SVM의 정확도가
88.89%, macro-F1이 88.75%로 가장 높으며 결정경계 식은 식(2)와 같다.

   −​−  ​−​  ​   (2)

특징 벡터 에 대해,   이면 졸음 상태로,   이면 정상
상태로분류한다. 은호흡수에대한심박수의비율, 는심박수, 는
호흡의 크기, ,와 는 각각 심박의 단기적 변동을 나타내는 standard
deviation 1과 장기적 변동을 나타내는 standard deviation 2이다. 이는
각각 번째와   번째 심박 간격을 축으로 하는 산점도에서 형성되는
타원의 단축과 장축 방향의 표준편차를 의미한다 [4]. , , , 는
음의 계수를 가져 값이 커질수록 졸음 가능성을 낮게 판단하며, 반대로는 양의 계수로 커질수록 졸음 가능성을 높게 판단한다. 또한, 의
계수의 크기가 1.1로 가장 큰 것으로 나타나, 졸음 상태를 판별하는 특징

Classifier
Drowsiness Drunk

Accuracy macro-F1 Accuracy macro-F1

SVM 88.89% 88.75% 78.57% 71.43%

Logistic
Regression

83.33% 82.86% 92.86% 91.81%

Random
Forest

72.22% 72.14% 71.43% 65.00%

표 1. 모델별 상태 분류 성능: 졸음·음주에 대한 정확도와 macro-F1.

중 가장 기여도가 높은 것을 알 수 있다.
음주 상태 분류의 경우, Logistic Regression의 정확도가 92.86%,

macro-F1이 91.81%로 가장 높으며 결정경계 식은 식(3)과 같다.

              (3)

는 음주 상태를 나타내며, 특징 벡터 에 대해 확률     이면 음주 상태로,      이면 정상 상태로
분류한다. 은 주파수 영역 평균 심박수, 는 호흡수, , 는 각각
호흡과 심박 파형의 왜도이다. 모든 특징이 양의 계수를 가져, 값이
커질수록 음주 상태일 확률이 높아진다. 호흡수는 상대적으로 약하게
기여하나 나머지 특징들은 균형 있게 작용하여, 여러 특징을 종합적으로
활용하는 것이 음주 상태 분류에 유효함을 보여준다. 결과적으로 두 상태
분류 모델 모두 정확도와 macro-F1가 비슷한 수치로 높아, 특정
클래스에 편중되지 않고 균형 잡힌 성능을 가졌다고 해석할 수 있다.

Ⅳ. 결론

본 논문에서는 운전자의 비정상 상태를 머신러닝을 적용하여 탐지하며,
FMCW 레이더를 통해 획득한 생체신호의 복합적인 파형 특징을

활용하였다. 졸음 상태는 88.89%, 음주 상태는 92.86%의 정확도로 정상과

비정상 상태를 효과적으로 구분하였으므로 본 논문의 연구 내용은 기존
연구들보다확장되어졸음운전및음주운전을함께감지할수있고이에

따라 비정상 상태에서의 교통사고가 경감될 수 있음을 시사한다.
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