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Abstract—The convergence of SCADA and IoT expands attack
surfaces while straining real-time defenses. Traditional intru-
sion detection systems suffer from centralized control, tamper
risks, and weak trust models. We propose a PureChain-based
SCADA–IoT approach that employs a custom blockchain for im-
mutable logging, decentralized trust, and secure prevention. The
framework combines signature and anomaly-based detection with
ML models, achieving rapid mitigation and auditable response.
Evaluations reveal a performance of accuracy–efficiency trade-
offs, with PureChain ensuring low commit times ( 0.067s), stable
throughput, and minimal resource utilization (2.07% CPU, 64
MB/validator). Results confirm its scalability and robustness for
securing critical SCADA–IoT infrastructures.

Index Terms—Intrusion detection, Prevention, PoA2,
PureChain, SCADA.

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA), in-
creasingly integrated with IoT devices, is vital to critical
infrastructure but faces heightened cyber risks due to expanded
attack surfaces and real-time operational demands [1]. Conven-
tional intrusion detection systems, while central to defense, are
insufficient to prevent attacks, data tampering, and logging ma-
nipulation [2]. These limitations hinder timely and trustworthy
detection and response, especially in distributed SCADA–IoT
environments, where adversaries can exploit weak nodes or
disrupt centralized monitoring [3].

Blockchain provides a decentralized, immutable, and trans-
parent foundation to enhance the integrity of data, distribute
intrusion alerts, and prevent log manipulation, thereby improv-
ing both detection reliability and prevention effectiveness [4].
While recent studies have explored blockchain-based anomaly
detection, alert sharing, and hybrid ML intrusion detection and
prevention systems (IDPS), performance trade-offs, particu-
larly in terms of latency, remain a challenge in SCADA net-
works [4], [5]. This work extends these efforts by examining
how blockchain integration can strengthen SCADA–IoT IDPS,
offering resilient, trustworthy, and scalable protection against
evolving cyber threats.

II. SYSTEM METHODOLOGY

This study proposes a SCADA–IoT IDPS, as shown in
Figure 1, that integrates PureChain [6] for storing hashed data
and flow statistics, thereby providing tamper-proof evidence to
ensure integrity and accountability throughout packet capture,

Fig. 1. Design details of the proposed PureChain-based IDPS architecture
illustrating the interaction of the involved entities.

traffic analysis, detection, alerting, and prevention. The system
follows a flow described by the Equation 1.

∀s ∈ {C,A,D, P, L} :C
H−→ A

H−→ D
d=0−−→ C,

C
H−→ A

H−→ D
d=1−−→ (P ∥ L) −→ C.
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async

(1)
where C represents data capture, A is analysis, D is detection,
P is prevention, L is system alert, B is PureChain, d ∈ {0, 1}
represents the detection decision (0 = benign, 1 = malicious),
∥ denotes parallel execution, and 99K log

async represents asyn-
chronous PureChain logging. Signature detection matches flow
features F against known attack patterns Σ as shown in
Equation 2.

Dsig(F ) =

{
1 if ∃σ ∈ Σ : σ ⊆ F,

0 otherwise,
(2)



while anomaly detection evaluates deviations from a baseline
model, as in Equation 3.

Danom(F ) =

{
1 if α(F ) ≥ θ,

0 otherwise.
(3)

The detection engine uses both signature-based and machine
learning-based anomaly detection to cover known and novel
threats. When a threat is detected (δ = 1), an alert AL is
triggered, and a prevention action A (e.g., IP blocking or
device isolation) is executed. Both actions are securely logged
on the PureChain, ensuring complete threat coverage, fast
response, and tamper-proof auditability.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed framework was evaluated using two IoT
intrusion detection datasets, comprising seven PureChain val-
idators and detection models (Random Forest, LSTM, and
BiLSTM). Table I shows that Random Forest achieves optimal
performance with the fastest training times of 150.9s for
ForgedIoT, and 184.7s for WUSTL. LSTM and BiLSTM
demonstrated high accuracy, albeit at the expense of longer
training time. Random Forest offers the best performance-
efficiency balance, while LSTM and BiLSTM are better suited
for complex sequential data at a higher computational cost.

TABLE I
MODEL EVALUATION

Data
Scenario Model Acc Prec Rec Fscore FPR Train

time (s)

WUSTL
Random Forest 1 1 1 1 0 184.7
LSTM 0.9993 0.9993 0.9993 0.9993 0 334.5
BiLSTM 0.9993 0.9993 0.9993 0.9993 0.0002 158.8

ForgedIoT
Random Forest 0.9998 0.9998 0.9998 0.9998 0.0009 150.9
LSTM 0.9963 0.9963 0.9963 0.9963 0.0109 207.0
BiLSTM 0.9967 0.9967 0.9967 0.9967 0.0109 165.1

Table II illustrates the PureChain evaluation, illustrating
notable differences in transaction volume and throughput. It
shows significance in transacting varying degrees of data vol-
umes (6,802 ForgedIoT Pro) at a rate of 24.5591 transactions
per second, and (686 WUSTL-IIoT-2021) at a rate of 2.2874
transactions per second, highlighting the system’s scalability.
Both setups maintain similar commit times ( 0.067 seconds),
relying on 7 validators with a 5-member quorum, ensuring
consistent performance and resilience in transaction validation.

TABLE II
PURECHAIN EVALUATION

Data
Scenario

Total
transactions

Total
blocks

Average
commit (s)

Throughput
(tps)

No of
validators Quorum

WUSTL 686 35 0.0676 2.2874 7 5
ForgedIoT 6802 341 0.0679 24.5591 7 5

Table III presents resource utilization estimates for
PureChain, exhibiting identical resource profiles. It requires
approximately 2.07% CPU, 64 MB memory, and 1.85 W
power per validator node. At the system level, this scales
to 14.49% CPU, 448 MB total memory, and 12.95 W total
power consumption, reflecting the aggregate requirements for
the validation process of seven (7) utilized validators. It

demonstrates that PureChain maintains consistent resource
efficiency across distinct IoT benchmark datasets, highlighting
its scalability and predictability in deployment scenarios.

TABLE III
PURECHAIN RESOURCE ESTIMATE

Data
Scenario

CPU Usage/
Validator (%)

Memory/Usage/
Validator (MB)

Power Usage/
Validator (W)

WUSTL 2.07 64 1.85
ForgedIoT 2.07 64 1.85

IV. CONCLUSION

This study introduced a PureChain-based SCADA–IoT
IDPS that leverages blockchain immutability and hybrid de-
tection to overcome the limitations of conventional systems
in distributed, latency-sensitive environments. Results show
Random Forest delivers the best balance of accuracy and
efficiency, while LSTM models remain suitable for complex
sequential threats at a higher cost. PureChain further ensures
scalable, low-overhead, and energy-efficient operation, validat-
ing its suitability for large-scale SCADA–IoT deployments.
Overall, the framework provides a resilient and auditable
cybersecurity solution for protecting critical infrastructures
against evolving adversarial threats.
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