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Abstract—Safety-critical software-defined vehicle (SDV) func-
tions require on-vehicle learning under tight power budgets.
Blockchain-federated learning (FL) designs, however, run the
proof-of-authority and association (PoA2) consensus per client
update, which inflates validator energy. We present PureChain,
a co-design that seals one PureChain block per FL round after
aggregation, eliminating consensus per update. The mechanism
reduces the validator energy and consistently improves the
energy–delay products (EDP, ED2P) without degrading the de-
tection accuracy.

Index Terms—Co-scheduling, Efficiency, Energy–Delay, Fed-
erated Learning, PoA2, PureChain, Software-Defined Vehicles
(SDV)

I. INTRODUCTION

Edge autonomy in Software-Defined Vehicles (SDVs) relies
on local intelligence for safety-critical V2V/V2I functions,
such as collision prevention and cooperative maneuvers, with
strict energy and latency constraints [1]. Centralized authen-
tication or anomaly monitoring is fragile in dynamic envi-
ronments and lacks scalability [2]. A more robust approach is
edge learning with trust anchored at the edge, where federated
learning (FL) keeps data local and blockchain ensures tamper-
proof coordination [3], [4]. Homomorphic encryption further
enables privacy-preserving misbehavior detection in IoV, rein-
forcing the need for edge FL [5]. Concurrently, FL research
is focusing on energy efficiency, incorporating client selection
and system-level co-design to meet edge power limitations [6],
[7].

A key inefficiency remains: many blockchain-FL stacks run
consensus per client update, which inflates validator energy
and round latency, the scarcest resources in vehicular edge net-
works [2]. We propose an energy-aware FL-IDS for SDVs that
co-schedules PureChain (PoA2) consensus, finalizing a single
block per federated round after aggregating the data from the
roadside unit (RSU), rather than n blocks for n clients. This
aligns the consensus cost with the progress of round-level FL,
preserving privacy while improving traceability and efficiency
for timely intrusion detection [8], [9].

II. SYSTEM ARCHITECTURE

We propose a four-layer energy-aware SDV stack: (i) on-
vehicle SDV layer (sensing, IDS, local training), (ii) RSU layer
with an energy-aware client scheduler and FedAvg aggregation
with round co-scheduling, (iii) PureChain layer with PoA2

validators, and (iv) audit/policy (access control, log), see
Fig. 1.

Fig. 1. Energy-aware PureChain workflow. (1) SDVs train locally and
send updates; (2) RSU energy-aware scheduler selects clients (e.g., residual
energy/link QoS); (3) RSU aggregates (FedAvg) and prepares a round payload;
(4) PureChain (PoA2) finalizes one block per round after aggregation (co-
scheduled consensus); (5) reported metrics: latency, validator energy, and
accuracy.

Each vehicle Vi extracts features ϕ(Di), runs a lightweight
IDS, and performs a local secure gradient update (SGD) step
to produce the client update u

(r)
i as in Equation 1:
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The RSU scheduler chooses a subset Sr ⊆{1, . . . , N} for
round r (energy/link awareness) and aggregates only {u(r)

i :
i ∈ Sr} through the FedAvg as in Equation 2; it forms a
compact payload pr = (r,H(θ(r+1)), stats):

θ(r+1) =

N∑
i=1

wi

(
θ(r) + u

(r)
i

)
, wi =

|Di|∑N
j=1 |Dj |

. (2)

Rather than validating a block per client update, PoA2

validators finalize one block Br per round when a ρ majority
signs pr, amortizing consensus from per update to per round
as quantified in Equation 3:

tfixedcons = N tb −→ tcocons = tb. (3)



Vehicles authenticate to RSUs; PoA2 enforces
RSU–validator bindings. Raw data never leaves Vi; PureChain
records only hashes and minimal metadata for accountability
and forensics.

III. EXPERIMENTATION AND PERFORMANCE ANALYSIS

We evaluated on CICIoV2024 with client counts nc ∈
{5, 10, 20} on 10 federated rounds. Data are non-independent
and identically distributed (non-IID) (Dirichlet α=0.7). The
learning stack (features, labels, model, optimizer) is identical
across both modes; only consensus timing changes: per update
PoA2 (one block per client update) vs. round-batched co-
scheduling (one block per round after RSU aggregation).
Validators are set to nv=5, Pv=40W. Because the learning
pipeline remains unchanged, accuracy/F1 score remains stable;
we therefore focus on latency/throughput, total energy, and
energy–delay (EDP/ED2P). Figure 2 shows the total energy
in R=10 rounds. Co-scheduling reduces energy by −176 J,
−376 J, and −776 J for nc=5, 10, 20, respectively, reflecting
the change from O(nc) to O(1) consensus commits per round.

Fig. 2. Total energy over R=10: co-scheduled PureChain (1 block/round)
vs. per-update PoA2.

Figure 3 reports updates/s vs. clients at R=10. Co-
scheduling improves rounds/s by +0.079, +0.234, +0.959
(updates/s by +0.395, +2.339, +19.183) for nc=5, 10, 20,
respectively, with greater gains at higher client density.

Fig. 3. Updates/s at R=10: co-scheduled PureChain increases throughput by
removing per-update consensus.

In all settings, EDP and ED2P decrease as energy increases,
while throughput increases, indicating simultaneous gains in
efficiency and responsiveness without sacrificing detection
quality. FL retains raw data on-vehicle, and the blockchain

ledger provides auditability and traceability, properties de-
sirable for SDV deployments under tight power and latency
budgets.

IV. CONCLUSION AND FUTURE WORK

We presented a PureChain-based energy-efficient FL co-
design that locks a single PoA2 block per FL round. Exper-
iments on CICIoV2024 with 5, 10, and 20 clients over 10
rounds preserved detection accuracy while reducing validator
energy and improving energy efficiency. Secondary benefits
include lower round latency and higher updates per second,
with gains strengthening as the fleet size increases. Future
work will evaluate hardware-in-the-loop on vehicular edge
platforms, co-optimizing adaptive round-level batching with
compression/quantization, broadening robustness metrics, in-
corporating reputation-aware validator selection, and extend-
ing to additional datasets and road scenarios.
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