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요 약

본 논문은 오프라인 강화학습 알고리즘인 Goal-Conditioned Supervised Learning (GCSL)의 성능 한계를 극복하기 위해 심화된 정
책 신경망 구조와 초구체 정규화를 적용한 모델을 제안한다. 기존 벤치마크와 달리 고수준 작업을 평가하는 OGBench의
Antmaze-medium 환경에서 5개 작업을 수행한 결과, 제안 모델은 GCSL 대비 모든 작업에서 작업 성공률이 크게 향상되었으며 평균
22.12%p의 개선을 달성하였다. 이는 정규화를 통한 데이터 분포의 보존과 신경망의 일반화 성능 향상에 기인한다.

Ⅰ. 서론

로봇의 움직임을 제어하기 위해선 로봇 관절의 회전 각도와 토크, 상대

적위치등을 계산해야 하는데, 이를 일일이제어하기란쉽지 않다 [1]. 그

래서 상대적으로 간단한신경망을사용하여로봇의 관절을제어하는강화

학습 알고리즘이각광받고 있다 [1]. 강화학습은 상태나 관찰값이 신경망

으로 모델링 된 정책 함수에 입력되면 적절한 행동을 생성한다.

강화학습은크게온라인강화학습과오프라인강화학습 두가지로구분

할수있다. 두 방법 모두로봇을에이전트로 만들어서환경과상호작용한

경험을 통해 학습한다는 공통점이 있다. 온라인 강화학습은 에이전트가

실시간으로환경과 상호작용하여 경험을 스스로 생성하지만, 오프라인 강

화학습은 이미 생성된 경험을 사용한다는 차이점이 있다.

전통적으로 온라인 강화학습은 유명 알고리즘인 Proximal Policy

Optimization [2]나 Soft Actor Critic [3]과 같이 에이전트가 좋은 경험을

생성하여정책 함수를효율적으로 업데이트하는방법을 주로연구하였다.

하지만에이전트가 직접경험을생성하는방법은 알고리즘구조에굉장히

민감하고 정교한 구현이 요구되어 모델링 하는 것이 매우 어렵다 [4]. 따

라서 이와 같은 어려움을 해결하기 위해 대안으로 오프라인 강화학습이

제안되었다 [5].

오프라인 강화학습은 사람이 직접 상호작용한 데이터나 정교한 조작을

통해 생성된 데이터를 에이전트의 경험으로 사용한다. 결과적으로, 오프

라인 강화학습은 경험 생성에 대한 부담이 줄어들고, 모델링이 온라인 강

화학습보다 수월해진다는 장점이 있다.

본 논문에서는 Goal-Conditioned Supervised Learning (GCSL) [5] 알

고리즘을 비교 대상 모델로 사용한다. GCSL은 여러 가지 오프라인 강화

학습 중에서도 특정 목표를 달성하기 위해 수집된 경험 데이터를 사용하

여 정책을 업데이트하는 알고리즘이다. 한편, GCSL은 정책 함수를 업데

이트하기 때문에 정책 신경망 구조에 따라 성능에 한계가 존재한다. 실제

로 GCSL의 신경망구조는 3층에불과하다. 따라서본논문에서는향상된

성능을 얻기 위해 GCSL의 정책 신경망 구조를 정교하게 심층화한

Massive Goal-Conditioned Behavior Cloning (MBC)을 제안한다. MBC

는 신경망의 심층화와 더불어 초구체 정규화를 적용한 구조 [6]을 사용하

였다.

Ⅱ. 본론

본 논문에서는 에이전트와 환경을 정의하고 성능을 비교하기 위해

OGBench [7]를 사용하였다. OGBench는 기존 벤치마크보다난이도가 높

은 고수준 작업을 포함하므로, 다양한 환경에 적응 가능한 에이전트를 모

델링 하기에적합하다. OGBench에는 수많은 작업이존재하는데, 본 논문

에서는 4족보행로봇 Ant가 중간크기의미로속에서목표지점까지이동

하는 Antmaze-medium 환경을 사용하였다. Antmaze-medium 환경의

예시는 그림 1에 제시되어 있다. Ant 로봇이 가로, 세로 15m의 정사각형

미로를 돌아다니며 시작 지점에서 목표지점까지 이동하는 서로 다른 5가

지 작업을 수행한다.

그림 1. OGBench의 Antmaze-medium 환경 예시.

GCSL 알고리즘은 오프라인 데이터에기반하여 단일 정책 신경망을학

습하고 이를 통해 로봇을 제어한다. OGBench에서 제공하는 오프라인 데

이터셋은품질이높기 때문에알고리즘의성능은정책 신경망이데이터셋

의행동확률분포를얼마나잘반영하는지에따라크게좌우된다. 따라서

본 논문에서는 GCSL 정책 신경망 구조의 은닉층을 깊게 설계해 더 정교

한 확률 분포를 학습하도록 설계하였다. 그러나 은닉층을 단순히 깊게 쌓

는방식은 과적합을유발할수 있으므로, [6]의 초구체정규화를 적용하여

이를 방지하였다.



초구체 정규화는 데이터 x∈ℝn가 주어졌을 때, 이를 ℝ  의 고

차원 공간에 매핑 (mapping)한 후, L-정규화를 적용하는 것이다. 초구
체 정규화를 적용하면 스케일 차이로 인해 무시될 수 있는 데이터구분이

보존되어, 신경망의표현력이향상된다 [6]. 초구체 정규화를하기위해먼

저 가공되지 않은 형태의 관찰값에 이동 통계정규화 (Running Statistics

Normalization, RSNorm)를 적용한다. 이동 평균과 표준편차가 수식 (1)

과 같을 때, RSNorm은 수식 (2)와 같다.

  
  

 
 (1)

o   RSNormo   


  

o   
 (2)

는 타임 스텝이고 는  o 로 현재와 이전의 관찰값 평균의

차이다. 그다음 이동 평균 정규화가 적용된 데이터를 고차원 공간으로 매

핑하고 L-정규화를 진행한다:
o   LNormo c  (3)

c는 하나의원소만 0이 아니고나머지는모두 0인벡터이다. 고차원 매핑

은 두 벡터를 연접 (concatenate)하여 수행한다. 일반적인 신경망은 편향가추가되지만, 본 논문에서는학습 가능한파라미터로구성된스케일링
벡터 s h

l∈ℝdh를 사용한다. 가중치가 w h
l∈ℝO    × dh일 때, 첫

번째 은닉층의 출력은 다음과 같다:

h 
  LNorm 

⊙o 

⊤
w h

  (4)

⊙은 벡터 또는 행렬의 원소별 곱셈을 의미한다.
수식 (1)~(3)은 입력 임베딩에 해당한다. 임베딩된 값은 수식 (4)와 (5)

로 표현되는 블록으로 들어가 N번 반복된다. 각 블록은 차원이 4배로 늘

어났다가 원래대로 돌아오는 inverted bottleneck 구조의 비선형 변환을

사용했다. 가중치가 각각 w h 
l ∈ℝdh× dhw h

l ∈ℝdh× dh이고 스

케일링 벡터 s h
l∈ℝdh가 주어졌을 때, 중간 출력은 다음과 같다:

h 


 LNormReLUs h

⊙h

⊤w h 

l w h 
l  (5)

마지막으로 블록의 최종 출력은 두 데이터를 보간한 뒤에 초구체 상으로

투영하는 방법으로 계산된다:

h 
    LNorm    ⊙h 

  ⊙h 


 (6)

∈ℝ과  ∈ℝ는 각각 단위 벡터와 보간 벡터를 의미한다.

데이터간 관계를명확히반영하는 값을 이용하여행동확률분포를 예

측하는 단계에서는 관찰값과 행동을 동시에고려하여 Q값을 추정해야 한

다. 본 논문에서는 Q값 추정을 위해 [6]에서 사용한 것과 같이

Distributional Reinforcement Learning 알고리즘 [8]을 사용하였다.

실험 결과는 표 1에 제시하였다. 서로 다른 랜덤 시드로 총 8회 실험되

었고, 실험 결과는평균과표준편차의 형태로 나타냈다. 최고 성능은 볼드

체로 표시하였다. 표 1에서 한눈에 알 수 있듯이 제안 모델인 MBC는 모

든작업에서큰폭의성공률향상을달성했다. 작업별평균성공률을기준

으로 작업 1부터 5까지 각각 성공률이 21.8%p, 30.1%p, 18.9%p, 18.0%p,

21.8%p만큼 향상되었다. 더불어 전체 작업에 대한 평균 성공률은

22.12%p 향상되었다. 모든 작업에서 성공률이 개선되었다는 것은 신경망

구조의 일반화 성능이 증가했음을 의미한다. 즉, 은닉층이 깊어지고 초구

체정규화가잘 적용되었기때문에 정책 신경망이 데이터의 특정 행동 확

률 분포에 치우쳐 과적합되지 않았다고 해석할 수 있다.

Ⅲ. 결론

본 논문에서는오프라인 강화학습 알고리즘인 GCSL의 정책 신경망구

조를 기존보다 심층화하고, 초구체 정규화를 적용하여 성능을 개선한

MBC를 제안하였다. OGBench의 Antmaze-medium 환경에서 5가지 작

업을 대상으로 실험을수행한 결과, 제안 모델은 GCSL 대비 모든작업에

서 성능이 크게 향상되었으며, 평균 22.12%p의 성공률 개선을 보였다. 이

는 단순히 은닉층을 깊게 설계하는 것뿐만 아니라 초구체 정규화를 통해

데이터의 확률 분포를 효과적으로 보존하고, 정책 신경망이 안정적으로

행동확률을근사할수있었기때문이다. 향후연구로는학습시간을효율

적으로 단축하는 방안에 대해 탐구할 계획이다.
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알고리즘 작업 1 성공률 작업 2 성공률 작업 3 성공률 작업 4 성공률 작업 5 성공률 작업 성공률 평균
GCSL [5] 0.360±0.124 0.225±0.093 0.218±0.075 0.256±0.091 0.465±0.165 0.305±0.102
MBC 0.578±0.204 0.526±0.192 0.407±0.149 0.536±0.212 0.683±0.231 0.546±0.193

표 1. GCSL과 제안 모델 (MBC)의 작업별 성공률 비교.


