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요 약

본 논문은 chaotic Lur’e 시스템에서의 이벤트-트리거동기화문제에 대해 다루었다. 통신은 비주기적으로 이루어지며, 동기화를위하여적절한 루프
드 함수를 설계, 여러 수학적 기법을 사용하여 안정화 조건을 선형 행렬 부등식의 형태로 제안하였다. 상황에 맞게 제어기의 성능을 조절할 수 있게
튜닝 파라미터를 이용하였으며, 이벤트-트리거 매커니즘을 통하여데이터의전송량을감소, 즉 통신의부담을감소시켰다. 마지막으로 제안한제어기의
유효함을 보이기 위하여 수치 예제를 통하여 검증하였다.

Ⅰ. 서 론

이벤트-트리거 제어는 시스템의 상태 변화에 따라 제어 신호를 보내는

방식으로데이터의 전송량을감소시켜네트워크의부하를 줄일수있다는

장점이 있다.[1-3] 제어기 설계를 위하여 시간 지연 접근법, 루프드 함수

접근법등다양한방법이있으며, 이에 대해 다양한 방식으로 연구되고있

다.[3] 추가로 하드웨어의 한계 혹은 데이터의 손실로 인하여 비주기적으

로 데이터를 받아오는 경우가 발생하며 이를 고려한 연구도 진행되고 있

으나, 아직까지는 연구자 대다수가 이론을 토대로 연구하며 실험을 통한

검증까지는 이루어지고 있지 않다.

본 논문에서는 비주기통신을하고있는 chaotic Lur’e 시스템간 이벤트-

트리거 동기화에 대해 다루고 있으며, 제어기 설계를 위하여 루프드 함수

접근법을 이용하였고 wirintger-based integral inequality[4]와 영등식등

을 활용하여 선형 행렬 부등식의 형태로 안정화 조건을 유도하였다. 마지

막으로 제안한 안정화 조건을 통해 얻은동기화 이득을이용하여 수치예

제에서 안정함을 보였으며 이벤트-트리거 제어를 통하여 데이터 전송량

을 감소함을 볼 수 있다.

Ⅱ. 본론

2.1문제설정

비주기통신을 하고있는마스터-슬레이브시스템은 다음과같이표현할

수 있다.

  (1)

  (2)

   (3)

여기서 ∈ 는 각각 마스터와 슬레이크 시스템의 상태이

며, ∙는 
≤  ≤ 

을 만족하

는 비선형 벡터, ∈ 는 동기화 입력 벡터, ∈ × ,

∈ × , ∈ × 는 시스템 행렬, ∈ × 은 동기화 이득이다.

는 k번째 샘플링이며, 는 샘플링 간격으로  ≤  

≤의조건을만족한다. 그리고 는마지막으로이벤트가발생한시

간이다. 그리고 이벤트-트리거 조건으로 양행렬∈ ×에 대하여

  
   ≤ (4)

을 만족하면 센서에서 제어기로 신호를 보내고, 만족하지 못한다면 신호

를 보내지 않는다.[2]

시스템의 오차를  로 정의하면 시스템을 다음과 같

이 정의할 수 있다.

  (5)

보조 정리[3] Wirtinger-based integral inequality

2.2주요결과

이 절에서는 시스템 (5)에 대한 이벤트-트리거 동기화 문제를 다루며다

음의 행렬 표현을 정의한다.

  × ×  
∈ ×   

   ×  ,  ×,

  ,   

 
 






       

  



  























 


 


 

 
 




 
  




  


 



 (6)



정리 1. 양의스칼라 , , , , , , 가 주어지고 다음

의 양한정 행렬 , , ∈ ×와 대칭 행렬 ∈ ×, 그리고

임의 행렬 , ∈ ×, ∈ ×, ∈ ×, ,

∈ × , 대각 행렬 ∈×, , ∈× 이 다음의
LMI를 만족하면 시스템 (5)는 점근적으로 안정하다.

        (7)











  

 


⋆  ×
⋆ ⋆ 

 











  

 


⋆  ×
⋆ ⋆ 

  (8)

여기서, 동기화 이득은  이다.
증명. 다음의 Lyapunov function과 루프드 함수를 고려한다.

  


×















































 


























 















  










 (9)

시스템 (5)로부터 다음의 영등식을 얻을 수 있다.

  



×  (10)

그리고 함수 ∙의 조건을 통해 다음을 얻을 수 있다.

≤  

   (11)

에 식 (4)의 조건과 식 (9)-(10)을 더한 뒤   ,

  , 일 때, 양변에 을 곱해주고 schur
complement를 해주면 LMI (7)-(8)를 얻을 수 있으며, 자세한 증명
과정은 생략한다.

2.3 수치 예제
다음과 같이 chaotic Lur’e 시스템을 고려한다.












  
  
  

 













  


  


 

정리 1을 통하여    ,  ,  ,   일

때 다음의 동기화 이득을 얻을 수 있다.

 








  

  
  



 








  

  
  



그림 1은순서대로마스터의 상태벡터, 슬레이브의상태벡터, 오차벡터,
샘플링 및 트리거 간격을 나타내었으며, 각 시스템의 초기 상태는 각각
      ,       이다.
그림 1을 통해 제안한 동기화 알고리즘을 통하여 얻은 이득을 사용하였
을때, 동기화가안정적으로 이루어짐을보였으며, 이벤트-트리거 동기화
를 통하여 샘플링된 신호의 24.24%만 전송하였다.

그림 1. 시스템의 각 상태 궤적과 샘플링 및 트리거 간격

Ⅲ. 결론

본 논문에서는 비주기 통신을 하는 chaotic Lur’e 시스템에서 이벤트-트

리거 동기화 문제에 대해 다루었다. 제어기를 설계하기 위하여 적절한 루

프드 함수를 설계하였으며, 여러 수학적 기법을 사용하여 안정화 조건을

선형 행렬 부등식의 형태로 유도하였다. 제안한 방법을 통해 얻은 이득들

을 이용하여 수치 예제에서 검증하였으며, 이를 통해 안정적으로 제어되

고 데이터 전송량이 감소함을 보였다.
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