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Abstract

본 논문은 자율주행 시스템 내 트랜스포머(Transformer) 기반 워크로드의 추론(inference)을 지원하기 위한 하드웨어 가속기 활용과 시스템적 제약

을 다룬다. 최근 자율주행 perception과 planning 영역에서 BEVFormer, trajectory transformer와 같은 모델이 활용되며 높은 성능을 달성하였으나,

연산량, 메모리 대역폭, 전력 제약 문제로 인해 차량 내 임베디드 플랫폼에서의실시간 처리에 큰 도전이 존재한다. 본 연구는 기존의 트랜스포머 추론

최적화 기법, 에너지 효율을위한엣지 AI 연구, 자율주행소프트웨어·하드웨어 스택리뷰, 트랜스포머와 하드웨어 가속기의관계를기반으로, 자율주행

특화 태스크별 워크로드–가속기 매핑(workload–accelerator mapping)을 정리한다. 이를 통해 현 시스템의 병목을 규명하고, 소프트웨어 최적화와

하드웨어 선택을 결합한 설계 방향을 제시하며, 향후 chiplet SoC, in-memory computing, 분산 추론 전략과 같은 미래 연구 과제를 논의한다.

Ⅰ. 서론

트랜스포머(Transformer) 모델은 멀티헤드 어텐션 구조를 통해 장거

리 의존성과 멀티센서 융합을 효과적으로 처리하며, BEVFormer,

TransFusion 등은 자율주행 perception과 trajectory prediction에서 기존

CNN 모델 대비 우수한 성능을 보여주었다 [4-6]. 그러나 이러한 모델은

대규모행렬연산과메모리접근을필요로하여, 차량 내엣지플랫폼에서

는 전력(수십~100W), 메모리(수 GB), 지연(<50ms) 제약이 병목으로 작

용한다 [1-3]. 기존 연구는 모델 경량화, 양자화, FPGA 기반 가속기 설계

등을 통해성능–전력균형을개선하고자하였으나 [2-5], 대부분 개별최

적화 기법에 집중되어 있어 자율주행 태스크 특성과 하드웨어 자원의 매

핑 관계를 포괄적으로 정리한 연구는 부족하다. 따라서 소프트웨어 수준

의 개선을 넘어, 하드웨어 아키텍처와 시스템 제약을 통합적으로 고려한

분석이 필요하다. 본 논문은 자율주행 파이프라인 속 트랜스포머 워크로

드의 특성과 GPU·FPGA·ASIC/NPU·SoC의 역할을 비교하고, 태스크별

워크로드–가속기 매핑 전략을 제시한다. 이를 통해 트랜스포머 기반 자

율주행 추론의 병목을 규명하고, 향후 chiplet SoC 및 in-/near-memory

computing 설계를 위한 연구 방향을 제안한다.

Ⅱ. 자율주행 시스템

자율주행시스템은센서입력, 소프트웨어스택, 하드웨어플랫폼, 출력 액

추에이터로 구성된다 [1]. 카메라, LiDAR, 레이더 등은 환경을 인식하고,

perception–localization–planning–control 모듈을 거쳐차량 제어로 이

어진다 [2]. 그림 1과 같이, 전체 파이프라인은 센싱부터 제어까지 계층적

으로연결되며, 그림 2와 같이 “Sense–Think–Act” 모델로단순화할 수

있다 [1-2]. 최근에는 BEVFormer, TransFusion 등 트랜스포머 기반 모

델이 이러한 파이프라인 속에서 핵심 역할을 담당한다 [4-6]

그림 2. Sense-Think-Act 모델

Ⅲ. 트랜스포머 기반 자율주행 하드웨어 시스템

짧은 추론 시간과낮은 전력 소모는 특히트랜스포머 기반 워크로드를 처

리하는 자율주행 시스템에서 중요한 요구사항이다 [1,6]. 그림 3과 같이

Tesla의 아키텍처는 전처리 모듈(Rectify, RegNet, BiFPN 등) 이후 트랜

스포머 블록을 통해 BEV 변환과 특징 융합을 수행하며, 이어 Object

Detection, Traffic Light 인식, Lane Prediction 등 다수의태스크를 병렬

로실행한다 [5]. 이러한데이터 흐름은 CPU 단독으로는처리량이 부족해

반드시 가속기의 지원이 필요하다.

GPU는 대규모 행렬 연산과 어텐션 메커니즘을 병렬적으로 처리할 수 있

어 BEVFormer, TransFusion 같은 모델 실행에 적합하다. 예를 들어

그림 1. 자율주행 시스템 아키텍쳐



그림 3 테슬라 자율주행 시스템

Apollo 플랫폼은 RTX 3070 GPU를 탑재한 산업용 컴퓨터를 통해 최대

20 TFLOPS 성능을제공한다 [1]. 그러나 실제실험에서는입력 해상도가

높아질수록 CPU에서 발생하는 스케줄링 지연으로 전체 FPS가저하되는

현상이 관찰되었다 [1]. 또 다른 연구에서는 GPU 기반 추론의 전력 소모

가 200W를 초과하면서 차량 ECU 전력한계를 넘어섰고, 열관리문제로

인해 장시간운행시성능저하(thermal throttling)가 발생하는 것이확인

되었다[4].

FPGA는 데이터 병목현상을 일부 해소할 수 있는 대안이다. Pony.ai의

실험에서는 FPGA를 활용해 CPU를 거치지 않고 GPU로 데이터를 직접

전송했을 때 평균 추론 지연이 약 15% 감소하는 결과가 확인되었다 [1].

또한 Apollo 프레임워크 기반 연구에서는 Zynq Ultrascale+ FPGA를 이

용해 차선 인식과 신호등 탐지를 가속했을 때, GPU 대비 전력 소모가

30% 이상 절감되면서도 유사한 정확도가 유지되는 결과가 나타났다. 그

러나 트랜스포머 특유의 동적 연산 패턴을 FPGA에 최적화하는 데는 여

전히 한계가 존재한다 [6].

SoC 기반 연구도 활발하다. Tesla의 FSD 칩은 40W 전력으로 72 TOPS

연산을 제공하며, 실제 도로 주행 실험에서 CNN 기반 태스크와 경량

Transformer 블록을 동시에 처리할 수 있음이 검증되었다 [1]. NVIDIA

DRIVE Orin은 벤치마크 테스트에서 254 TOPS를 달성했으며, LPDDR5

메모리인터페이스를 통해멀티카메라트랜스포머 추론을실시간으로지

원하는 것으로 나타났다 [4]. Mobileye EyeQ 시리즈또한 heterogeneous

가속기 구조를 도입하여 CNN과 Transformer 연산을 분리 실행했을 때

평균 지연이 20ms 이하로 유지되는 성능이 확인되었다 [1].

이와 같은분석은단순한성능비교가아니라, 워크로드–가속기매핑전

략을 제시한다는 점에서 중요하다. 즉, CNN 기반 태스크는 FPGA/ASIC

에, BEV 기반 인식은 GPU/NPU에, trajectory prediction은 NPU/ASIC

에 최적화된다. 이를 정리한 것이 표 1과 같이, 자율주행 주요 태스크별로

적합한 하드웨어를 대응시킨 매핑 전략이다. 이러한 전략은 향후 chiplet

SoC 설계나 in-memory computing 연구에서 실제 하드웨어아키텍처 선

택에 지침을 제공할 수 있다 [1,6].

V. 결론

트랜스포머 모델은 자율주행 인식과 예측 성능을 크게 향상시키며,

BEVFormer나 TransFusion과 같은 최신 접근법은 복잡한 주행 환경에

서도 강력한 성능을 보여준다 [5,6]. 그러나 이러한 워크로드는 높은 연산

량과 메모리 대역폭을 요구하여, 차량 내 임베디드 플랫폼에서 실시간 실

행 시 전력·발열·지연의 병목이 발생한다 [1]. 본 논문은 자율주행 파이프

라인 속 트랜스포머 응용을 정리하고, GPU, FPGA, ASIC/NPU와 같은

가속기의 역할 및 태스크별 매핑 전략을 검토하였다. 향후 연구는 chiplet

기반 SoC, in-/near-memory computing, 분산 추론 전략을 통해 이러한

제약을 완화하고, 실세계 자율주행 시스템에서 트랜스포머추론의 효율성

과 상용화 가능성을 더욱 높일 것으로 기대된다 [3,6]

표 1. 자율주행 워크로드-가속기 맵핑
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Autonomous
Driving Task

Workload Type
Best-fit
Accelerator

Rationale

Lane/Traffic
Light Detection

CNN (regular
conv)

FPGA / ASIC

Structured
pipelines,
low power,
deterministic
latency [5]

BEV
Construction
(BEVFormer,
BEVFusion)

Transformer
(attention-heav
y)

GPU / NPU

Parallel
tensor ops,
high
throughput
[6]

Trajectory
Prediction

Transformer
(seq2seq)

NPU / ASIC
Deterministi
c low-latency
inference [6]

Multi-sensor
Fusion(LiDAR+
Camera)

Hybrid
CNN+Transfor
mer

GPU + NPU

Balanced
workload
split,
memory
bandwidth
critical [3]


