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요 약

본 연구에서는 심층 강화학습(Deep Reinforcement Learning, DRL)을 활용하여 상업용 대형 건물의 HVAC(Heating,
Ventilation, and Air Conditioning) 제어 문제를 다루었다. 관련 연구에서 개발된 온·습도 예측 모델을 DRL 학습 환경으로
적용하고, 실증 데이터를 기반으로 성능을 평가하였다. 실험 결과, 제안한 DRL 제어는 기존 규칙 기반 제어 대비 약 5%의
전력 절감 효과를달성하였으며, 동시에 실내 쾌적도 유지 성능을 확보하였다. 이를 통해 DRL 기반 제어가 건물 에너지 효율
향상과 탄소중립 건축 환경 실현에 기여할 수 있는 가능성을 확인하였다.

Ⅰ. 서 론

전 세계 최종 에너지 소비 중 약 30%는 건물 부문에서 발생하며 [1], 이

중 냉난방·환기를 담당하는 HVAC(Heating, Ventilation, and Air

Conditioning) 시스템은 건물 에너지 사용량의 30~40%를 차지하는 것으

로 알려져 있다 [2, 3]. 따라서 HVAC 시스템의 효율적 운영은 건물 에너

지 절감뿐 아니라 탄소중립(Net Zero) 건축 환경 실현을 위한 중요한 과

제로 인식되고 있다.

기존의 규칙 기반(rule-based) 제어와 모델 예측 제어(Model Predictive

Control, MPC)는 일정 수준의 성과를 보였으나, 실제 건물은 외부 기상

변화와 실내 부하 변동성이 크고 비선형적 특성을 지니기 때문에 이러한

전통적 방식으로는 최적화에 한계가 존재한다. 예컨대, 외기 온도의 급격

한 변화나 공조기의 시간대별 불규칙한 사용 패턴은 고정된 제어 규칙만

으로는 대응하기 어렵다.

최근 인공지능 기반접근법이 주목받고 있으며, 그중에서도 심층 강화학

습(Deep Reinforcement Learning, DRL)은 환경과의 상호작용을 통해 스

스로 제어 정책을 학습할 수 있다는 점에서 HVAC 제어 문제 해결의 잠

재적 대안으로 부상하고 있다 [4, 5]. 본 연구에서는 DRL이 기존 규칙 기

반제어대비에너지절감과쾌적도유지의균형을동시에달성할수있는

가능성을 검토하였다.

본 연구의 목적은 상업용 대형 건물의 실증 데이터를 기반으로 DRL 기

반 제어 프레임워크를 설계하고, 데이터 기반 예측모델을활용하여 DRL

환경을 구성하며, 기존 규칙 기반 제어와의 성능을 정량적으로 비교함으

로써 DRL의 실용성을 평가하는 데 있다.

Ⅱ. 본론

1) 제안 프레임워크

본연구에서는 DRL 기반 HVAC 제어프레임워크를제안하였다. 프레임

워크는 상태(state) 입력, 정책 신경망(policy network)에 의한 행동

(action) 산출, 예측 모델을 통한 환경(environment) 관측, 그리고 보상

(reward) 계산으로 이루어진 순환 구조를 따른다. 에이전트(agent)는 주

어진 상태를 입력받아 공조기(Air Handling Unit, AHU) 및 냉동기

(chiller) 출력에 대한 제어 신호를 결정한다.

본 연구의 중요한 특징은 CFD(Computational Fluid Dynamics)와 같은

물리기반시뮬레이터를 사용하지않고, 데이터 기반온·습도 예측모델을

활용한 점이다. 해당 예측 모델은 LSTM(Long Short-Term Memory) 기

반으로, 외부 기상 조건, 실내 환경 변수, 공조기 및 냉동기 운전 정보를

입력으로 받아 향후 실내 온·습도 변화를 추정한다. 이를 DRL 환경으로

적용하여 데이터 기반 제어 정책 학습을 가능하게 하였다.

보상 함수는 에너지 효율과 쾌적도라는 상충 목표를 동시에 반영하였다.

전력 소비량이 증가할수록 음의 보상을 부여하고, 실내 온도가 허용 범위

를 벗어나면 쾌적도 위반 패널티를 적용하였다. 이를 통해 DRL 제어기가

단순 전력 절감이아닌 에너지 효율과 쾌적도의균형적 달성을학습할 수

있도록 설계하였다.

그림 1 DRL 기반 HVAC 제어 프레임워크

2) 데이터 및 학습 환경

실험에는해외상업용 대형마트에서장기간수집된 HVAC 운전 로그가

활용되었다. 데이터는 외부 기상 조건과 실내 부하, 공조기 및 냉동기 인



버터 운전정보가 포함되어 있어 실제 건물의동적특성을 충분히반영한

다. 전체 데이터 중 약 80%는 학습(training dataset)에, 나머지 20%는

검증 및 성능 평가(test dataset)에 사용하였다.

학습은 하루 운전 데이터를 하나의 에피소드(episode)로 정의하였다. 하

나의 제어 스텝(step)은 10분 간격이며, 영업시간 08:00~21:00 동안 총 79

step이 하루를 구성한다. 상태는 실내·외 온습도, 환기 조건, 장비 운전 신

호 등 10여 개의 변수를 포함하였고, 행동은 공조기 및 냉동기 출력 제어

로정의하였다. 이러한설정은 DRL 모델이실제운영환경에적합한제어

정책을 학습할 수 있도록 하였다.

3) 실험 결과

성능평가는독립된 test dataset을 대상으로수행되었으며, 기존 규칙기

반제어방식과 DRL 기반제어방식을비교하였다. 비교 지표는공조기와

냉동기의총 전력소비량(kWh)과 실내 온도 허용범위 위반 패널티로 설

정하였다.

실험 결과, DRL 기반 제어 방식은 기존 규칙 기반 제어 방식 대비 평균

약 5%의 전력 절감 효과를 달성하였다. 세 가지 정책은 쾌적도 허용수준

을달리설정하여학습한결과이며, 목표하는실내온도안정성수준에따

라 에너지 절감률이 조정될 수 있음을 보여준다.

쾌적도 측면에서도 실내온도허용 범위를벗어나는빈도가기존 제어와

유사하거나 개선된 수준으로 나타났다. 이는 제안한 DRL 기반 제어가 에

너지 절감과 실내 쾌적도의 동시 달성을 가능하게 함을 실증적으로 보여

준다. 또한 이러한 결과는 선행 연구들 [4, 5]에서 보고된MPC 기반 접근

법보다유연하고 데이터기반친화적인대안을 제시한다는점에서의의를

가진다.

Ⅲ. 결론

본 연구에서는 DRL 기반 HVAC 제어 프레임워크를 제안하고, 상업용

대형 건물의 실제 운전 데이터를 활용하여 성능을 검증하였다. 제안한

DRL 기반 제어 방식은 기존 규칙 기반 제어 대비 평균 약 5%의 전력 절

감 효과를 달성하면서도 실내 쾌적도 유지성능을확보하였다. 이는 DRL

이 복잡하고 동적인 건물제어문제에 효과적으로 적용될 수있음을 보여

주는 결과이다.

본 연구의기여는 (1) 실증 데이터를활용한 DRL 기반 HVAC 제어프레

임워크 제안, (2) 에너지 효율과 쾌적도라는 상충 목표를 동시에 고려한

보상 함수 설계, (3) 기존 제어 방식과의 정량적 비교를 통한 성능 개선

검증에 있다.

향후 연구에서는 보상 함수의 세분화, 다양한 DRL 알고리즘의 성능 비

교, 계절별·건물 유형별 데이터 반영, 장기 실증 연구 등을 통해 방법론의

일반성과 실용성을 강화할 예정이다. 이러한 고도화는 건물 에너지 관리

효율을높이고, 나아가탄소중립건축환경실현에기여할수 있을 것으로

기대된다.
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구 분(kWh) 전력 소비량(절감비) 온도 패널티

기존(규칙 기반) 9,603.6 -14,021

정책 1 9,158.5 (-4.6%) 1,261

정책 2 8,666.7 (-5.1%) -3,485

정책 3 8,149.6 (-5.4%) -5,237

표 1. 기존 제어 방식과 DRL 기반 방식의 성능 비교


