HE A4t ik A4t JH3tE 53
ARM Cortex-M4 3ol A ¢] HQC 7}&d g A+
AER, A58, o]5E, AAs, 144
A B 87129 (DGIST)

{ehwls5111,dhkim200426,dltnwhd7426, dgwogh, ysk}@dgist.ac.kr

Research of accelerating HQC on ARM Cortex-M4
by optimizing polynomial multiplication and bitwise operation

Do Jin Kim, Dong Hyun Kim, Soo Jong Lee, Jae Ho Jeon, Young-Sik Kim
Daegu Gyeongbuk Institute of Science&Technology (DGIST)

2 o
2 =8 Z2E A d3PQCO) ¢xdF S 3uel HQC(Hgmming Quasi-Cyclic)E A A /AALE 37 o A
agHor Agstr] 93 HH3 PSS A3t HQC-128 ¢ M Eo] HE AAS B48t3%a AA Ao fjREs
2}A &= vect_mul ¢} trailing_zero_bits_count(), gf_carryless_mul() 32 FH A sttt o] At Y&l 34

WE 54& 83 Shift-and-Add 4], de Bruijn sequence 7]¥+e] w2 Count Trailing Zeros A4k, Z18]al 4 H|E

pall
=]
[e]

Look-Up Table 7|¥ke] GF() Z=
Encapsulation, Decapsulation ¥14F A]

5L
h=]
g

Z

I.A4 &
7122 A7) g2 AAE A AFEHS Edem s
FEstE 9ol Aadth(1] olHd FAHFHE AT

FAd WAS 7FAE PQC (Post-Quantum Cryptography)”7}
Y 4E AAR FEEa glvh NIST & 2016 9 F8 PQC
®xEs A% AxE At 2022 @ 8 4, Dilithium,
KYBER, SPHINCS 3 7}4] ¢atglFo] B0 2 AAHYoH
20254 349, HQC(Hamming Quasi-Cyclic) ¢aLg]&o] M =2$
g% dugEoz AAFAUT HQC ¢ Z$ Error Correction
Code 7]Wre] PQC ¢xgFoz2 7]£9 ML-KEM ¢1d&5s
e o WS AREE7] wded, A AAE gZEe=
arg|Fol FYstd Ag iy dagFoEM AgE 3

Holl WS 7471 f& PQC & ¢y o= ¢
2 gt o] PQC 9o 54¥ 74 HQC &=
To2 A wiEe IoT 7171 <9 AlA,
e AAG/AHE tupolzelA HQC
w2 A FEeke AF7F BA Zuh(3] s dF
HEHAE FAse [oT yule]x=Eel EAA, 3
tinfo] 2o A IR FE O] FAo FH o] A, AA

7] MEYAS] hay w3 Felsl B Rolh4].

wpEhA] 2 Ao A = 2Flo] A gHA Q1 T]nfo] ol A
HAA el AL BxE I o APH/AAYE
ZolAd HQC & F%3t= Aol 7l 3tdA ad
A7 Zolle FE7F i HE4o2 ALEE o
oA &3 4= 9= ARM Cortex-M4 & A€3}o]
ol HAsls APt

o &

rl o oy

HAEE 939 Cortex-M4 Z2ZAAE A2k STM32F407G
HEoA HQC & 53 ZF g4z 25ss AFS 22
8 sttt Cortex-M4 7o) 9A] Reference HQC &=
£ 7}¥3 PQClean 9] Z=E A5t eon 1 A3 HQC oA
PQCLEAN_HQC 128_CLEAN_vect_mul() 3571 AA] A9
96%~98% 5 A3 A2 geleA). [5]

HAA3E AHgedu. AL HAHE 7|HE 53 HQC-128 <9 Keygen,
FS 71F Clean 78 Wiv] zbz} 34 1), 24 v, 24 v @31},

F7t4 o2 Reference =% Ubuntu #4eA Viune #4&
%3 trailing_zero_bits_count(), gf_carryless_mul) &7}
2e NS AR v AMEES A 7F Atke] BAS
At 712 T HagAdS dstyl Sls Al kA
A sl weks AA 2 A 835k
Cortex - M4 (STM32F407G) Function Cpu cycle Cycle %
random_fixed_weight 44891903 135
gf mul 0.0 0.00
Key_gen 331883196 vect mul 3259209713
veot_set_random 1460625.0 0.44
vect add 12409.0 0.00
random_fixed_weight 7735495 8 NG}
of mul 27538505 0.41
enc 663926069.0 veet_mul 651821935.0
vect_set_random 1578523.3 0.24
vect add 36264.5 0.01
random.fixcd_weight 12243995.0 121
of mul 23786825.8 234
dec 1015395072 vect_mul 977737716.8
vect_set_random 1578517.3 0.16
vect add 48017.3 0.00
¥ 1HQC-128 Z2wdy Az}

1) PQCLEAN_HQC128_CLEAN_vect_mulQ) %9 GF(2)
e FAL HAHFsdd. HQC LdaugFold AlgFHE
17669-bit WME7} HAAZE= hFEe U4A7F 0 29 Sparse
Vector &= Aol Z<tatgict. 71&9] Karatsuba w41 A&
olggl IS E&sA K e dAVE AT oE

Madstz] 9, =ME AAE Agshs Al 19 $14 gh(index)
e ARshE dleld e Estsih w4 A AL o
e~ MEE VIwkow Sa ¥Eel Weight ®HEw whe S

TS duvFs WS 4 Nk T A

%R Dense Vector & Shift 3Fal, 71 A¥E olx A4t Ay}
9} 3 XOR 8= Shift-and-Add WAS T3 HF T4

e =z

Algorithm 1 Shift-and-Add Multiplication

1: Input: Multiplicand M, Positions of ones , Hamming
weight n
: Output: Product A
A«0
for i< 0ton—1do
A+ A® RightShift(M,Ql])
: end for
: return A

2) trailing_zero_bits_count 3¥Fe AES R}
A s 48w 16 vE fGdA F8 0 BE] J]4(Count
Trailing Zeros, CTZ)E AXsh 7] THe Aot

P 14 39 WE AZE B AND Qg aAHos
R H]i%@"hﬂr 2 AFdAE olF T s
de Bruijn sequence & &-&3}3t} (a & -a) HE AAHS E3

8 g 9 HtY M E(Least Significant Bit, LSB)E ##]3}aL,

o]2 Abd AHYH de Bruijn sequence 4(0x077CB531)¢+
wetth o] w4l Ade= F3 0 o sl HlEsteE AIZE
AT A3 adE v, F9 5 HEE F3 0 o 5l
wEl aFe e 2 "o o] 5 HE $he dYaz AMEEY
A AlAE Look-Up Table (LUT)o| Hgto =z, o 3
Aol Wme FxE CTZ #e 54 953 4 2

Algorithm 2 CTZ using De Bruijn Sequence
1: Input: 16-bit integer a, precomputed table table[32]
: Output: Number of trailing zero bits of a
: if a = 0 then
return 16
else
isolated_bit <+ a & (—a)
index < (isolated_bit x 0x077CB531) > 27
return table[index]
: end if

W e R N

3) Reed-Solomon H-3Z3}e] Alg¥ = gf carryless_mul()
849 GFO) 2= 348 HAs3lslt}h. 719 word-by-word
A WA 8 HE wfe] Aite] 9lo] Hag Aot &
AT = 8 HE FAl Astd g Hed F53}e 4 v E
@9l Look-Up Table (LUT)S &&3= W25 Aeksio),
16x16 =A7]9] Hol&o]| 4 HE ¥FdAAzte] 2E FA A=
AR Aggkth 8 H]E AHEI T MNE 7 S 4 vES} 3H9
4 MERZ FEst & F d ¥ Holg x3|9F AIZE 9 XOR
Arks F3 16 HIE = A%E 5““5}3}.

5 b dAake wE vrg doow Ao s,
#% modular reduction ©] FALH7| A <=4 vIdA F
= carry-less multi-plication @49 Ad%5<& :Lﬂ]@r@ﬁ]-.

Algorithm 3 Karatsuba-like Multiplication
1: Input: Operands a,b, precomputed multiplication table
mul_table

: Output: Product ¢

c+0

: Split @ into (a10w,ahigh)

: Split b into (b10W7 bhigh)

. 2o mul_table[aiow] [biow]

T 29— mul_table[ahigh] [bhigh]

: midy < mul_table[anigh][biow]

: midy < mul_table[aiow][bhigh]

. middle < mid, ® mids

: ¢ 20 ® (middle < 4)

i c1 ¢ 22 ® (middle > 4)

: return c

VN LA WN

—_
W N = O

#HA3zlek HQC-128 ¢ As<S Cortex-M4 =
STM32F4Discovery HXZ= 57301]*1 SAsAT e
7]& PQClean ¢, A3 A7, 2 AF9 HAs 79,
E® garglEl Kyber & EH"“’ PP

l-Fx‘Eu:E
OE 2

e e

. Encapsulation Decapsulation
Algorithm Keygen (cycle) (eyele) (eycle)
HQC-128 _
(PQClean) [5] 49,469,943 99,681,960 150,204,454
HQC-128 [6] 1,837,507 4,878,515 7,502,580
HQC-128 Ours 1,449,093 4,078,067 6,090,755
Kyber-768 1,244,545 1,267,141 1,352,252
pamd4 [7]

X 24% 54 4% vu
a

(cortex M4 168MHz, 1000 3 =74 3, Ht] Alo]F 57)
m 3 23 2 28

Afdoz NZE HA T3 WAo] Clean T3 Uiy
Keygen = ©¢F 34 ¥, Encapsulation ¥ Decapsulation = <F
24 W} Aol FFHEAT. EI dd Fd¢ HHsE 3 V&
Aot gy, FHHA g HAsE F3 Adee d
N8kl o, ﬂﬂi}ﬂ T& oA Encapsulation & ¢ 4M Alo| &,
Decapsulation & 6M Alo]Z= Xﬂ%‘i@. A= A= Ax

AgHo=E ALRT F 01% —’F—Zroﬂ =

71 i EA 2 NIST %+ PQC 9 Kyber-768 I} w|ugS
o F7F= ﬁﬁ% HQC ‘C T4 B4 Ads AT Aelvt
AAT, Kyber ¢ w72 HA84 FFA *}%7]' gk
TS ﬁOJO}Oi‘:P FF HQC o ZAFs 9 u&HstsE 9%
27 A7 Feste, 538 ARM Cortex-M AlY T EAJA 9
SIMD @HolE #§d Wy A4 WS Fa Y5E U%
FFANA 5 S Ao 7hE

ACKNOWLEDGMENT

H =Fe DGIST UGRP Zz213o o3 T A5

FnEd

“

[1] Shor, Peter W. "Algorithms for quantum computation: discrete
logarithms and factoring." In Proceedings 35th annual
symposium on foundations of computer science, pp. 124-134,
1994.

[2] Boutin, C. "NIST Selects HQC for Fifth Algorithm for Post-
Quantum Encryption," NIST News, Mar. 2025.
(https://www.nist.gov/news-events/news/2025/03/nist-selects—
hqc-fifth-algorithm-post-quantum-encryption)

[3] Asif, Rameez. 2021. "Post-Quantum Cryptosystems for
Internet-of-Things: A Survey on Lattice-Based Algorithms" IoT
2,no. 1: 71-91.

[4] Jae-Dong, Kim. "A Comprehensive Analysis of Routing
Vulnerabilities and Defense Strategies in [oT Networks." arXiv
preprint arXiv:2410.13214 (2024).

[5] Kannwischer, Matthias J., Peter Schwabe, Douglas Stebila, and
Thom Wiggers. "Improving software quality in cryptography
standardization projects." In 2022 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), pp. 19-30. IEEE,
2022.

[6] Aissaoui, Ridwane, Jean-Christophe Deneuville, Christophe
Guerber, and Alain Pirovano. "A performant quantum-resistant
KEM for constrained hardware: optimized HQC." In 21st
International Conference on Security and Cryptography, pp.
668-673. SCITEPRESS-Science and Technology Publications,
2024.

[7] Matthias J. Kannwischer, Richard Petri, Joost Rij neveld, Peter
Schwabe, and Ko Stoffelen. "PQM4: Post-quantum crypto library
for the ARM Cortex-M4."

