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random_fixed_weight 44891903 135
gf mul 0.0 0.00
Key_gen 331883196 vect mul 3259209713
veot_set_random 1460625.0 0.44
vect add 12409.0 0.00
random_fixed_weight 7735495 8 NG}
of mul 27538505 0.41
enc 663926069.0 veet_mul 651821935.0
vect_set_random 1578523.3 0.24
vect add 36264.5 0.01
random.fixcd_weight 12243995.0 121
of mul 23786825.8 234
dec 1015395072 vect_mul 977737716.8
vect_set_random 1578517.3 0.16
vect add 48017.3 0.00
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Algorithm 1 Shift-and-Add Multiplication

1: Input: Multiplicand M, Positions of ones , Hamming
weight n
: Output: Product A
A«0
for i< 0ton—1do
A+ A® RightShift(M,Ql])
: end for
: return A
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Algorithm 2 CTZ using De Bruijn Sequence
1: Input: 16-bit integer a, precomputed table table[32]
: Output: Number of trailing zero bits of a
: if a = 0 then
return 16
else
isolated_bit <+ a & (—a)
index < (isolated_bit x 0x077CB531) > 27
return table[index]
: end if
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Algorithm 3 Karatsuba-like Multiplication
1: Input: Operands a,b, precomputed multiplication table
mul_table

: Output: Product ¢

c+0

: Split @ into (a10w,ahigh)

: Split b into (b10W7 bhigh)

. 2o  mul_table[aiow] [biow]

T 29— mul_table[ahigh] [bhigh]

: midy < mul_table[anigh][biow]

: midy < mul_table[aiow][bhigh]

. middle < mid, ® mids

: ¢ 20 ® (middle < 4)

i c1 ¢ 22 ® (middle > 4)

: return c
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. Encapsulation Decapsulation
Algorithm Keygen (cycle) (eyele) (eycle)
HQC-128 _
(PQClean) [5] 49,469,943 99,681,960 150,204,454
HQC-128 [6] 1,837,507 4,878,515 7,502,580
HQC-128 Ours 1,449,093 4,078,067 6,090,755
Kyber-768 1,244,545 1,267,141 1,352,252
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