

비트 연산과 다항식 연산 최적화를 통한

ARM Cortex-M4 상에서의 HQC 가속에 대한 연구

김도진, 김동현, 이수종, 전재호, 김영식

대구경북과학기술원 (DGIST)

{ehwls5111,dhkim200426,dltnwhd7426, dgwogh, ysk}@dgist.ac.kr

Research of accelerating HQC on ARM Cortex-M4

by optimizing polynomial multiplication and bitwise operation

Do Jin Kim, Dong Hyun Kim, Soo Jong Lee, Jae Ho Jeon, Young-Sik Kim

Daegu Gyeongbuk Institute of Science&Technology (DGIST)

요 약

본 논문은 포스트 양자 암호(PQC) 알고리즘 중 하나인 HQC(Hqmming Quasi-Cyclic)를 저전력/저사양 환경에서

효율적으로 실행하기 위한 최적화 기법을 제안한다. HQC-128 의 병목이 되는 연산을 분석하였고 전체 연산의 대부분을

차지하는 vect_mul 함수와 trailing_zero_bits_count(), gf_carryless_mul() 함수를 최적화하였다. 이를 개선하기 위해 희소

벡터 특성을 활용한 Shift-and-Add 방식, de Bruijn sequence 기반의 빠른 Count Trailing Zeros 계산, 그리고 4 비트

Look-Up Table 기반의 GF() 필드 곱셈 최적화를 적용하였다. 제안한 최적화 기법을 통해 HQC-128 의 Keygen,

Encapsulation, Decapsulation 연산 시간을 기존 Clean 구현 대비 각각 34 배, 24 배, 24 배 단축하였다.

Ⅰ. 서 론

기존의 공개키 암호 체계는 양자 컴퓨터의 발전으로 인해

무력화될 위기에 처해있다.[1] 이러한 양자컴퓨터를 사용한

공격에 내성을 가지는 PQC (Post-Quantum Cryptography)가

차세대 암호 체계로 주목받고 있다. NIST 는 2016 년 부터 PQC

표준을 위한 절차를 시작하였다. 2022 년 8 월, Dilithium,

KYBER, SPHINCS 3 가지 알고리즘이 표준으로 지정되었으며

2025 년 3 월, HQC(Hamming Quasi-Cyclic) 알고리즘이 새로운

표준 알고리즘으로 선정되었다. HQC 의 경우 Error Correction

Code 기반의 PQC 알고리즘으로 기존의 ML-KEM 알고리즘들

과는 다른 방식을 사용하기 때문에, 앞서 지정된 표준으로

알고리즘이 무력화될 경우 백업 알고리즘으로써 사용될 수 있다.

[2] 양자 컴퓨터에 내성을 가지기 위해 PQC 는 일반적으로 더

많은 연산을 필요로 한다. 이러한 PQC 의 특성과 함께 HQC 는

비교적 최근에 표준으로 채택되었기 때문에 IoT 기기 와 센서,

스마트 카드와 같은 저사양/저전력 디바이스에서 HQC

알고리즘을 빠르게 구동하는 연구가 많지 않다.[3] 상호 연결

되어 네트워크를 구성하는 IoT 디바이스들의 특성상, 하나의

디바이스에서 양자컴퓨터의 공격에 취약점이 발견된다면, 전체

기기 네트워크의 안전성 또한 침해하게 될 것이다[4].

따라서 본 연구에서는 자원이 제한적인 디바이스에서 HQC 를

최적화하는 것을 목표로 한다. 여러 저전력/저사양 프로세서

중에서 HQC 를 구동하는 것이 가능 하면서 효율적으로 작동

시키는 것에는 무리가 있고. 범용적으로 사용되어 다양한 분야

에서 활용할 수 있는 ARM Cortex-M4 를 선택하여 해당 환경

에서 최적화를 진행하였다.

Ⅱ. 본론

최적화를 위해 Cortex-M4 프로세서를 장착한 STM32F407G

보드에서 HQC 를 구동하며 각 함수별로 소모하는 시간을 프로

파일링 하였다. Cortex-M4 환경에 맞게 Reference HQC 코드

를 가공한 PQClean 의 코드를 사용하였으며 그 결과 HQC 에서

PQCLEAN_HQC 128_CLEAN_vect_mul() 함수가 전체 연산의

96%~98%를 차지하는 것을 확인하였다. [5]

추가적으로 Reference 코드를 Ubuntu 환경에서 Vtune 분석을

통해 trailing_zero_bits_count(), gf_carryless_mul() 함수가

많은 시간을 소모하고 있는 사실을 확인했다. 각 연산의 특성을

분석하여 기존 구현의 비효율성을 개선하기 위해 세 가지

최적화 방안을 설계 및 적용하였다.

표 1 HQC-128 프로파일링 결과

1) PQCLEAN_HQC128_CLEAN_vect_mul() 함수의 GF(2)

벡터 곱셈을 최적화하였다. HQC 알고리즘에서 사용되는

17669-bit 벡터가 실제로는 대부분의 원소가 0 인 Sparse

Vector 라는 점에 착안하였다. 기존의 Karatsuba 곱셈 방식은

이러한 희소성을 활용하지 못하는 한계가 있었다. 이를

개선하기 위해, 벡터 전체를 저장하는 대신 1 의 위치 값(index)

만을 저장하는 데이터 구조를 도입하였다. 곱셈 연산 시, 이

인덱스 벡터를 기반으로 희소 벡터의 Weight 만큼만 반복을

수행하도록 알고리즘을 변경하였다. 각 반복에서는 해당 인덱스

값만큼 Dense Vector 를 Shift 하고, 그 결과를 이전 연산 결과

와 누적 XOR 하는 Shift-and-Add 방식을 통해 최종 곱셈

결과를 도출한다.

Cycle %Cpu cycleFunctionCortex - M4 (STM32F407G)
1.354489190.3random_fixed_weight

331883196Key_gen
0.000.0gf_mul
98.20325920971.3vect_mul
0.441460625.0vect_set_random
0.0012409.0vect_add
1.177735495.8random_fixed_weight

663926069.0enc
0.412753850.5gf_mul
98.18651821935.0vect_mul
0.241578523.3vect_set_random
0.0136264.5vect_add
1.2112243995.0random_fixed_weight

1015395072dec
2.3423786825.8gf_mul
96.29977737716.8vect_mul
0.161578517.3vect_set_random
0.0048017.3vect_add

 2) trailing_zero_bits_count 함수의 성능을 개선하였다.

해당 함수는 입력된 16 비트 값에서 후행 0 비트의 개수(Count

Trailing Zeros, CTZ)를 계산한다. 기존 구현은 결과와

무관하게 14 회의 비트 시프트 및 AND 연산을 고정적으로

수행하여 비효율적이었다. 본 연구에서는 이를 개선하기 위해

de Bruijn sequence 를 활용하였다. (a & -a) 비트 연산을 통해

입력 a 의 최하위 비트(Least Significant Bit, LSB)를 분리하고,

이를 사전 정의된 de Bruijn sequence 상수(0x077CB531)와

곱한다. 이 곱셈 결과는 후행 0 의 개수에 비례하는 시프트

연산과 동일한 효과를 내며, 상위 5 비트는 후행 0 의 개수에

따라 고유한 값을 갖게 된다. 이 5 비트 값을 인덱스로 사용하여

사전 계산된 Look-Up Table (LUT)에 접근함으로써, 단 한

번의 메모리 참조로 CTZ 값을 즉시 획득할 수 있다.

 3) Reed-Solomon 부호화에 사용되는 gf_carryless_mul()

함수의 GF() 필드 곱셈을 최적화하였다. 기존의 word-by-word

곱셈 방식은 8 비트 단위의 연산에 있어 비효율적이다. 본

연구에서는 8 비트 곱셈의 제한된 입력 범위에 주목하여 4 비트

단위의 Look-Up Table (LUT)을 활용하는 방식을 제안한다.

16×16 크기의 테이블에 4 비트 피연산자의 모든 곱셈 결과를

사전 저장한다. 8 비트 입력값 두 개를 각각 상위 4 비트와 하위

4 비트로 분할한 후, 총 네 번의 테이블 조회와 시프트 및 XOR

연산을 통해 16 비트 중간 결과를 합성한다. 이 방식은

반복적인 산술 연산을 빠른 메모리 접근으로 대체함으로써,

최종 modular reduction 이 적용되기 전의 순수 다항식 곱셈,

즉 carry-less multi-plication 단계의 성능을 극대화한다.

최적화한 HQC-128 의 성능을 Cortex-M4 를 탑재한

STM32F4Discovery 보드 환경에서 측정하였다. 성능 비교는

기존 PQClean 구현, 선행 연구, 본 연구의 최적화 구현, 또다른

표준 알고리즘인 Kyber 를 대상으로 진행했다.

Algorithm Keygen (cycle)
Encapsulation

(cycle)

Decapsulation

(cycle)

HQC-128

(PQClean) [5]
49,469,943 99,681,960 150,204,454

HQC-128 [6] 1,837,507 4,878,515 7,502,580

HQC-128 Ours 1,449,093 4,078,067 6,090,755

Kyber-768

pqm4 [7]
1,244,545 1,267,141 1,352,252

표 2 성능 측정 결과 비교
(cortex M4 168MHz, 1000회 측정 후, 최대 사이클 수집)

Ⅲ. 구현 결과 및 결론

결과적으로 새로운 최적 구현 방식이 Clean 구현 대비

Keygen 은 약 34 배, Encapsulation 과 Decapsulation 은 약

24 배 성능이 향상되었다. 또한 단일 함수 최적화를 한 기존

연구와 달리, 추가적인 함수 최적화를 통해 성능을 더

개선하였다. 최적화된 구현에서 Encapsulation 은 약 4M 사이클,

Decapsulation 은 6M 사이클로 저전력 임베디드 시스템에서도

실용적으로 사용할 수 있는 수준에 도달했다.

가장 대표적인 NIST 표준 PQC 인 Kyber-768 과 비교했을

때 추가로 선정된 HQC 는 구조적 특성상 여전히 성능 차이가

있지만, Kyber 와 마찬가지로 실용적 수준에서 사용가능한

수준을 확인하였다. 향후 HQC 의 경량화 및 고속화를 위한

추가 연구가 필요하며, 특히 ARM Cortex-M 계열 프로세서의

SIMD 명령어를 활용한 벡터 연산 병렬화를 통해 성능을 더욱

향상시킬 수 있을 것으로 기대된다.

ACKNOWLEDGMENT

본 논문은 DGIST UGRP 프로그램의 일환으로 수행되었음.

참 고 문 헌

[1] Shor, Peter W. "Algorithms for quantum computation: discrete

logarithms and factoring." In Proceedings 35th annual

symposium on foundations of computer science, pp. 124-134,

1994.

[2] Boutin, C. "NIST Selects HQC for Fifth Algorithm for Post-

Quantum Encryption," NIST News, Mar. 2025.

(https://www.nist.gov/news-events/news/2025/03/nist-selects-

hqc-fifth-algorithm-post-quantum-encryption)

[3] Asif, Rameez. 2021. "Post-Quantum Cryptosystems for

Internet-of-Things: A Survey on Lattice-Based Algorithms" IoT

2, no. 1: 71-91.

[4] Jae-Dong, Kim. "A Comprehensive Analysis of Routing

Vulnerabilities and Defense Strategies in IoT Networks." arXiv

preprint arXiv:2410.13214 (2024).

[5] Kannwischer, Matthias J., Peter Schwabe, Douglas Stebila, and

Thom Wiggers. "Improving software quality in cryptography

standardization projects." In 2022 IEEE European Symposium on

Security and Privacy Workshops (EuroS&PW), pp. 19-30. IEEE,

2022.

[6] Aissaoui, Ridwane, Jean-Christophe Deneuville, Christophe

Guerber, and Alain Pirovano. "A performant quantum-resistant

KEM for constrained hardware: optimized HQC." In 21st

International Conference on Security and Cryptography, pp.

668-673. SCITEPRESS-Science and Technology Publications,

2024.

[7] Matthias J. Kannwischer, Richard Petri, Joost Rĳ neveld, Peter

Schwabe, and Ko Stoffelen. "PQM4: Post-quantum crypto library

for the ARM Cortex-M4."

